8 lectures on accelerator physics

- Lectures can be found at
 - http://www.hep.lu.se/staff/christiansen/teaching/
- Lecture 1 and 2: Introduction
 - Why do we accelerate?
 - What are the important parameters for characterizing accelerators
- Lecture 3 and 4: Examples
 - Examples of accelerators
- Lecture 5 and 6: Advanced topics
 - Transverse motion, strong focusing, and ESS (Mats Lindroos)
- Lecture 7 and 8: Projects + presentations
 - Small group projects on free project

Project

- Idea: follow your own interest
 - 4 first lectures are designed to give you foundation to dig deeper
 - 5-6 groups and 8-10 minutes presentation
 - 1 lecture to prepare & 1 lecture to present
- Examples from earlier courses:
 - Opera neutrino results
 - Plasma wakefield acceleration
 - LHC overview & problems with superconducting magnets at LHC
 - Medical isotope production
 - Hazards in accelerators
 - + chapter "Applications of accelerators"
 - In the same book also chapter 1 (history) and chapter 14 (future) might be excellent inspiration

What are accelerators used for?

Inspiration

Discovery Science

- Particle and Nuclear Physics
- Materials science, chemistry, biology, …

· ·

Energy and Environment

- accelerator-driven reactors (future)
- Inertial confinement fusion with heavy-ions (future)
- Flue-gas treatment

Accelerators and Beams

National Security

Medicine

Medical radioisotopes

Cancer therapy

- Cargo screening
- Active interrogation
- Radiography

Industry

- Electron processing
- Sterilization
- Ion implantation

Accelerators by the Numbers

Inspiration

	Application	Systems (thru 2008)	mep	
	Ion Implantation	10,000		
	Electron beam modification	7,000		
	Electron and X-ray irradiators	2,000		
	Ion beam analysis and AMS	200		ļ
	Radioisotope production	600		
	High energy x-ray inspection	750		
	Neutron generators	2000		
	Radiotherapy	8000		
	Hadrontherapy	25		
	Photon Sources (synchrotron radiation,) 80		
<	Nuclear and Particle Physics Research	110		
	Total	~30,000		

The most well known category of accelerators – particle physics research accelerators – is one of the smallest in number. The technology for other types of accelerators was born from these machines.

Schedule

- This week
 - Tuesday 13-15: lecture 1 and 2 (and part of 3)
 - Wednesday 15-17: lecture 3 and 4 (and part of 5)
 - Thursday 13-15: ESS lecture by Mats Lindroos and group work
- The following week
 - Monday 13-15: group presentations + lecture 6

Material: inspiration and slides

- "A BRIEF HISTORY AND REVIEW OF ACCELERATORS", P.J. Bryant
- "AN INTRODUCTION TO PARTICLE ACCELERATORS", E. Wilson
- "Accelerator Physics", S.Y.Lee, 2nd edition.
- Reviews of Accelerator Science and Technology Volume 1
- Lectures by Anders Oskarsson
- Lectures by Eric Torrence (University of Oregon)
- LHC lectures by Danillo Vranic

Material: online resources for further information

- "Accelerators for pedestrians"
 - http://cds.cern.ch/record/1017689?ln=en
- "U.S. Particle Accelerator School"
 - http://uspas.fnal.gov/
 - See their lecture file catalogue

Think break

- Lecture 1 and 2: Introduction
 - Why do we accelerate?
 - What are the important parameters for characterizing accelerators

Why do we accelerate?

To probe the structure of e.g. protons

- The wavelength $\lambda \sim \frac{\hbar}{E}$
 - Need big E to see small structures!
- Example: deep inelastic scattering

To create new particles

- Convert kinetic energy into mass (E=mc²)
- Example:

1/4 - 2014

In particle physics we study the particles 15 thousand million years The Big Bang

What are the main characteristics of an accelerator

- Energy and Luminosity!
 - The rest of these 2 lectures will be about that!

What is the relevant energy?

- We need to calculate the CM energy
- Two interesting limits
 - Fixed target (1 beam + stationary target)
 - Collider (beam-beam collisions)
- Make calculation!

Example fixed target at CERN SPS

Reconstructed event

High momentum in laboratory system

Particle production is focused forward in the direction of the Beam

Typically needs a long experimental setup

Large Hadron Collider (LHC)

 \sqrt{s} = 8TeV (14TeV, 2015) (vs 0.2 TeV LEP) (vs 1.8 TeV Tevatron) Collides hadrons (protons and ions) instead of electrons.

1/4-2014

Accelerator lectures 1 and 2 P. Christiansen (Lund)

The ALICE experiment at LHC

What limits the energy in a collider?

• Why can't the LHC run at, e.g., $\sqrt{s}=20$ TeV?

The magnetic field!

Exercise

• Calculate the bending radius for LHC where maximum B = 8.33T and the maximum Ebeam = 7TeV using that

$$p[GeV/c]=0.3 \cdot B[T] \cdot R[m]$$

• Compare the bending radius to the circumference of LHC which is 26.7 km

Why does LHC collide protons and not electrons?

LEP Accelerator (CERN 1990-2000)

- 27 km circumference
- 4 detectors
- e⁺e⁻ collisions
 - LEPI: 91 GeV
 - 125 MeV/turn
 - 120 Cu RF cavities
 - LEPII: < 208 GeV
 - <u>~3 GeV/turn</u>
 - 288 SC RF cavities

LHC (and proton colliders in general) are discovery machines!

• We sacrifice the precise knowledge of the initial collision to reach unprecedented energies

Collisions at LHC

However – synchrotron light can itself be used for good physics

MAX-lab Accelerators

The accelerators at MAX-lab consist of three electron storage rings (MAX I, MAX II and MAX III) and one electron pre-accelerator (MAX injector). All three storage rings produce synchrotron light used for experiments and measurements in a wide range of disciplines and technologies. The MAX I ring is also used as an electrons source for experiments in nuclear physics.

And maybe even good for your careers!

The MAX IV Laboratory - our future light source

Final comment on synchrotron radiation

 Synchrotron radiation has also a positive effect in that it "corrects" for beam disturbances making electron beams easier to control

Luminosity and collisions rates

Luminosity

Intensity or brightness of an accelerator

 $N = \mathcal{L} \cdot \sigma$

- Events Seen = Luminosity * cross-section
 Rare processes (fb) need lots of luminosity (fb⁻¹)
- In a storage ring

$$\mathcal{L} = \frac{1}{4\pi} \frac{f \cdot N_1 \cdot N_2}{\sigma_x \cdot \sigma_y} \quad \text{``Current''} \\ \text{``Spot size''}$$

Where *f* is the revelation frequency multiplied by *#* of colliding bunches More particles through a smaller area means more collisions

Higgs discovery at CERN Status end of 2011

- What is the total # of produced Higgs's in the ATLAS experiment if $m_{\rm H}$ =130GeV?
- Answer: ~5fb⁻¹*10,000fb ~ 50,000!

Note that this corresponds to

- roughly
 - ~5,000,000,000,000mb⁻¹*~70 mb ~
 350,000,000,000,000 inelastic pp collisions in 2011!

Higgs mass window End of 2011

- Why is the limit not better at low mH where the cross section is larger?
- Answer: m_{μ} too low for direct decay to 2W or 2Z 1/4-20 Cleanest signatures 1 and 2 P. Christiansen (Lund)

Best Higgs signature: $H \rightarrow 2\gamma$ 2011 pre-discovery

39

Best Higgs signature: $H \rightarrow 2\gamma$ 2012 discovery

1/4-2014

40

$H \to 2\gamma$ evolution during run 1

Accelerator lectures 1 and 2 P. Christiansen (Lund)

Summary Main ingredients in LHC success

- Energy → 10 times higher cross section than Tevatron and integrated luminosity already ½ at end of 2011!
- In 2012 LHC collected 20 fb⁻¹ ~ 2 * integrated Tevatron! 1/4-2014 Accelerator lectures 1 and 2 P. Christiansen (Lund)