Lectures on accelerator physics

* Lecture 5 and 6: Advanced topics

* Transverse motion, strong focusing, and LHC
* Material borrowed from

_ecture by Anders Oskarsson
_ecture by Eric Torrence (University of Oregon)

_HC lectures by Danillo Vranic (GSI)

* Weak focusing follows “Principles of Charged
Particle Acceleration” by Stanley Humpries Jr.
Chapter 7.
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Towards the Synchrotron
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- Dipole magnet give circular motion

- Acceleration in E-field
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The particles are “surfing” the
acceleration wave

1 | Fositive particles just sitting there

* '4_}:"' Electromagnetic V\ave

. as seen from above
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Focusing In the transverse plane
y

.

Y4

« Assume (v,,v,,V,)~(0,0,v) and v~c = constant!
* Very good assumption!

e z=Vvt - t=z/v (~z/C)
o d/dt ~ v d/dz (~c d/dz)
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Transverse focusing In y direction

Force needed to restore/focus!

AY
 '
...... -—»‘--------------- y=0 (Ideal)
\1
>Z

* Need a restoring/focusing force!

e F,~ -k

 Harmonic oscillator (like string)
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Transverse focusing In x direction

Force needed to restore/focus!

)((,7
. =T (ideal)
(x=0)

* Need a restoring/focusing force!

¢ F ~-k*r ~-vB, + -k*Xx 2
= central force (ry) + harmonic oscillator in x
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Let us first solve harmonic equation
(ignoring magnet realities!)

- 9
rigﬂ 2, d°Y
YN —— = YU ——
dt= dz

= —ky

2

y(z) = yo E“H{T; + ),

where

[ vymu?

A= QW\I." =

* Note that the wavelength does not depend on
the amplitude y,. There is only one wavelength

for all amplitudes!
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Tune Interlude

e One defines

e Q (V[nu]) = C/A, where C=2m1r, Is the circumference
of the synchrotron ring

* Q Is the number of transverse (betatron)
oscillations per turn

* |t is different for x and y directions
* Very important for beam stability!
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Bad harmonic tune (Q=10.2)

1 turn 100 turns

Problem: tune does not integrate out magnet imperfections
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Better (less harmonic) tune
(Q=10.48)

1 turn 100 turns

Tune Is better at integrating out magnet imper

fections
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Lesson: bad musicians makes great
accelerator physicists

e, [ l/f-alsejnote-184545551
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LHC TUNES

HORIZONTALTUNE: () = 64.31

AT 7TeV VERTICAL TUNE: Qy = 59.32
AQ<8-107°
AT 450GV HORIZONTALTUNE: () = 64.28

VERTICAL TUNE: Qy = 59.31

Betatron tunes should avoid linear coupling resonances at

nQ, +mQ, =p
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Back to transverse motion and

magnet realities!
* Taylor expanding the dipole magnetic field AND
fulfilling Maxwell equations gives
* (By,By,B,) ~ (-(NoBy/Ty)y, Bo - (NgBy/rg)*X, 0)
- NB! note that —sign is not good!

 |ldeally we want n, as large as possible to
confine the beam!

* (And make the magnet as small as possible)
» Let us look at solution for x (r)!
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The equation of motion for x

d*r " d4r p2
Nl —— = YN — = Y — — gu
Ym v VI 73 Y . quB,,

Substituing x = r — r, + expanding —:

d?x 1 I q

dz? v, ¥

Inserting the Taylor expansion of B,

d*x 1 qBy 1 " gng By "

: — :
BT % R T
dz re ymy VIUT ¢

1

e first two terms gives the solution for the ideal trajectory R
The first t { tl lution for tl leal t ctory —: -

=4
so that:

d2x 1
m = —r—zlf]. — TLH}II'.
i
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Weak focusing: 0 <n_ <1

— = ——(1 — mg)z.

* Only harmonic oscillation solution when (1-
ny,)>0 (and y equation requires n,>0)

* Otherwise exponential growth!

* This means that the focusing Is limited!
 That is why this solution is called weak focusing
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LHC example

 LHC focuses the beam using magnetic fields of
223 T/m

* |f one would use weak focusing the magnetic
field should be smaller than
8.33T/2800m = 0.003 T/m!i!

* And so the ring would have to be enormous!

* And the luminosity would be very small!
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Can we find better focusing?
Beamline Elements

Dipole (bend) magnets

3032015 Also Sextupoles and beyondure s and 6
P. Christiansen (Lund)
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Quadropoles has similar problem!

FOCUSING OF THE PROTON BEAM

Quadrupole looks good - field increases linarly with distance from the center.

F, has wrong direction! It doesn’t work!
No solution: Maxwell tells us VXB: )uJOJ §()5Bdl — ,ULOI
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PROBLEM

Quarupole is convergent lens in horizontal, but divergent in vertical direction!

There was no solution until 1952, and it is beautiful and simple:
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SOLUTION: AG OR STRONG FOCUSING

HORIZONTAL
J% “riilﬁ FODO LATTICE
Wl L F - focusing
—l{ = . X D - defocusing
l { —F = J O - drift space or dipoles

If we have alternating convergent and divergent lenses
with right spacing overall effect is focusing!
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Animation taken from The Physics of Accelerators
Slides by C.R. Prior Rutherford Appleton Laboratory and Trinity College, Oxford
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LHC FODO LATTICE CELL (106.9 m)

The pattern of bending and focusing magnets is called lattice.

DEFOCUSING
/ QUADRUPOLE

‘Short Straight Section
e | u!:
—{om s
i T W
— | ma
L] Ml‘:
"? ? . 3
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E oz 5
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/

FOCUSING
QUADRUPOLE

8/25/2010
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3 MAIN DIPOLES

MCS: Sextupole corrector (b3}

MO Assembly of spool correctors consists of an cctupole insert MICO (b4 and a decapole magnet MOCTY (hS)
MOT: Trom quarapole comrecior

MS: are sextupole corrector

MIQS: skew quad lattice corrector

MOCBH: Horizontal dipole corrector

MCBVY: Verticul dipole correcior

ALCY: Lattice octupoke

D. Vranic 4
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Energy adjusting by AC (longitudinal)
& transverse strong focusing

Longitudinal Transverse
¥

time= ]
1-2 B
1f time= 0 1
I:'-E B
I:'-E B
L L 1 X
0.4 f -2 -1 i el
0.2 f /\
del =
2 g &

» “Catching the beam” animations taizen from

o http://www.Ins.cornell.edu/~dugan/USPAS/
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Beam dynamics

 Phase space limits

* The beta function
* Focusing the beam at the interaction point
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Phase space limit (1/2)
LF | L o] L* |

—

Y A //// YA YA : Y
/b\, §§ 7Y TN
y Ay § y LAy

* Liouville's theorem states that for most beams
the phase space area cannot change
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Phase space limit (2/2)

« In reality the limit is on p,*y:

« Constant=p,*y ~ymp,*y where (3,= dy/dt
~ympB*y'*y  wherey' =dy/dz

S0 the phasespace limit implies that the area
of the phase space ellipse for y'*y (the beam
emittance) decreases as 1/p

* This is called adiabatic damping. The physical
size of the beam decreases as it is
accelerated. The width decreases as 1/Vp
[the other 1/Vp is the decreasing divergencel].
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http://www.lns.cornell.edu/~dugan/USPAS/

The beta function (1/2)

The “gutter” analogy Based on:
ACCELERATORS FOR PEDESTRIANS

Simon Baird

x=+eP(s)cos(W(s)+op)

 The idea is to separate the transverse motion into two parts:

* The Initial conditions: € (emittance) and ¢

« A part depending the focusing and de-focusing by magnets: (3(s)
and W(s)

- The [(s) function depends on where in the accelerator we are and not
related to the velocity [3)

30/3-2015 Lecture 5 and 6 30
P. Christiansen (Lund)



The beta function (2/2)

The “gutter” analogy Based on:
ACCELERATORS FOR PEDESTRIANS

1) Amptitude small
° 2) phase of betatron oscillations . .
. advances rapidly with s. Simon Baird

x=+ePB(s)cos(W(s)+o)

~_  ,® é) Ahmptin}d; large _ ' 8 R
B gt x'= B(s) sin(W(s)+¢)
B(s)

* S0 the beta function is related to how strong
focusing we do and is the one we want to
optimize In particular at the interaction points

* Note that x*x'~¢& so that the phase space area
Is still the same
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Recall lecture 1 and 2

* Intensity or brightness of an accelerator
N=L-o
* Events Seen = Luminosity * cross-section
Rare processes (fb) need lots of luminosity (fb™t)

* |n a storage ring

1 f ]\f1 . ]\f7 “Current”
L= ) —
A Tt 0,0, Spot 9@

Where fis the revelation frequency multiplied by # of colliding bunches
More particles through a smaller area means more collisions
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Example of focusing for collisions at

P2 (ALICE)

diameter 1Tmm

‘TRl

A

" 11 [ M I|'I|' e
O e Y L. wianic
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SYMMETRY!
LerTsibE EXAMPLE: Focuses beam!

LONG STRAIGHT SECTION
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B8 _ MATCHING SECTION (Q4, Q5, Q6, QT)
Lt T | i [ | SEPARATIONDIPOLES (D1,02) | | INNER TRIPLET (01,02, 03)
Q7 - Q6 Qs . Q4 D2 D1 Q3 Q2 Qf
W uER Ilum Mokl ~ m' g | | ME¥  WARC| xmEC Rx | Jumes  MoMB Moo MEWMD
I I ] 3 |—- i ME| T MK I_ = r Thi 1-:::lu — T W o
= i . o[ | P2
]: J:n | H L fﬁ oo i— 7 - ‘ |
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4 E_:: : : .:'.:':.::'I;I 2 A58 HE 20,183 16,506 A, el g 8 Ee ]
28540 -| - 14,88 BT — 27T =T 11— Pl =T AN —=BA9- = AR AN =l == T =t Frl ) -
g EFA1G %
]
" RIGHT SIDE MIRRORED THEN: defocuses beam!
Dg—ifi—LES
| om wm L. = L v
Q7. Qe @5 08 D2 D1 Q3 Q2 Qf
A i."‘””| |'."°’"L_= § = _’zf"x P s 0 ',“E‘.l
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:" *.'ﬂ ; H » F Tt F
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2413 - I :"151 ==]| 4.8 34 4, e 1,5 1,53
0,88 =l 34 - 4748
| T4 6T - B A6T = [ W] =710 et =iy ':61“"'15 245 B3 Ras = B4 = 2087 — Pl
2 #
z i
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Examples of synchrotrons
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Synchrotrons

Use smaller magnets in a ring + accelerating station

Dipole magnet
Accelerating section (RF cavities)
i
] e
P ﬁ““% F &) X
r.."'-h-.-.-_p" II_-
/
3 GeV protons
BNL 1950s -Ijlf /
Injection magnet
Eé (Kicker magnet))
: : P 38-8-8-—————~ | Parlide
Basis of all circular _ LINAC IL R _
machines built since '. \ ©) AN
% HF source (Kly stron) ﬁﬁ 'E.@
AN _ &
xﬁi&@ ’ffi’fﬁ \
- - 'l'l.
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BRAHMS

o '17717_7
o o

4 5

fysN15 Accelerators 4



RHIC ramp with 56 bunches

— Beamlons.mon PPM User 1 B
File Setup Logging Diagnostics
Thu Aug 2 2001 RFHIC - DCCT total beam & WCH bunched beam
16000 4
1 Acceleration Storage energy
14000 1
L2000t o Total Blue current
0 100001 | l
o 90007 Injection energy €——
CR i Total Yellow current
BO00 1 .
! BLUE { '
4000 1 Y_ELLOW Fill 56 liwt
20001 bunches /* ransition energy
Correctlon pomts (stepstones)

16:16:30 1B:17:30 1E 18 a0 1E 1E| 30 1E 20 a0 1E 21 a0 1E 22 3 16: 23 a0 16: 24 a0 1E 25 a0 1E 25 a0 16: 2? 30 1E 28 an 1E 29 a0 1E 30 30
time of day

—&—  blullCCTtotal yelICCTtotal —#—  blublCHbunched

—8—  yelhCHbunched relMon, ev-accranptrel EventNumtl: walue relMon, ev-stonetrel Event Numk
relbon, ev-boammat ;rel EventNumb;value

jﬂ Message Area w
The beam is accelerated from Injection Energy (10 GeV) to Storage
Energy (100 GeV). The acceleragtion process is called “ramp”.
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CERN Large Hadron Collider

I_.HC DIPOLE : STANDARD CROSS-SECTION

CERN ATDILRAM - HEBDT - 10 14 1555

———— ALIGNMENT TARGET

e MAIN QUADRIFOLE BUS-BARS

———— HEAT EXCHANGER PIPE
— e SUPERINSULATION

T %\ SUPERCONDUCTING COILS

Y\ BEAMPFIFE

| ——VACUUM VESSEL

e

0 BEAMSCREEN
T AUXILIARY BUS-BARS
/
.\H"',f - SHRINKING CYLINDER / HE |-VESSEL

T THERMAL SHIELD (S5 to 75K)

7

.,
™~ " NON-MAGNETIC COLLARS

" IRON YOKE (COLD MASS, 1.9K)

g T DIPOLE BUS-BARS

T ————SUPPORT POST
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Heat Exchanger ||

Beam Pipe
Superconducting Coils \

Helium-Il Vessel

ool Piece

s Bars  Superconducting Bus-B:

H“‘-»_L_
— lron Yoke

~ Non-Magpnetic Collars

- Vacuum Vessel
1adrupole

s Bars __— Radiation Screen

—— Thermal Shield

The
\ (P xilla 1 5 = m I o n g
Broteciian <4 Ir:;tru ment::::: i Tu e L H c c ry0d I po I e

Xt Feed Throughs




The 19 September 2008 accident

Sector temperature profile at lw

a9 | R
- Move cursor to square to identify ma

4.7 2
- u oy
43
41
3.9
3.7
3.5
3.3
31
2.9
2.7
2.5
2.3
21
1.9

1.7
15

Point 3 Mid Arc Point 4
[0 RF cavitiezs [0 Arc magnetz M L3S maghets

Temperature [K]
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CERN
Complex

Old rings still in use
Many different programs
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. LEIR: Low Encrgy lon Ring

CERN Accelerators

(not to_scala}

ALICE 7%

—— OIS

— IOT18

maurnos o Gran Sasso (|)

LHC: Large Hadron Collider
SPS: Super Proton Synchrotron
AD: Antiproton Decelerator
IS0LDE: Isotope Separator OnlLine DEvice Gran Sasss (T)
PSB: Proton Synchrotron Booster T30 km
P5: Proion Synchrotron

LINAC: LINear ACcelerator

Rucell LETY, 18 ([vimmen, CER N, 0000 86

. £ Revism and slapicd by A i Dl R, ETT D¥w,
CNGS: Cern Nentrinos (o Gran Sasso s i BLDiv. ot
. Mangioski, PE iy, CHEN, 2800500
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ION BEAM IN THE LHC

¢ ECR ion source

— Provide highest possible intensity of Pb29+
e RFQ + Linac 3

— Adapt to LEIR injection energy

— strip to Pb54+

e LEIR

— Accumulate and cool Linac 3 beam
— Prepare bunch structure for PS

e PS

— Define LHC bunch structure

— Strip to Pb82+

e SPS

— Define filling scheme

P Pbims
LINAC 3
11/23/2010 D. Vranic
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LEIR: Electron cooling example

electron
collector A e
A1

gun

Electron beam = =107
z —=
LA e lon beam E
T 2.5m o |
i L frequency

 From: http://web-docs.gsi.de/

e Elastic collision e+ion will decrease the relative
momentum spread in the beam
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11/23/2010

D. Vranic
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LHC Pagel Fill: 1530 E: 3500 Z GeV

ION PHYSICS: STABLE BEAMS

S WAA 1(B1): 8.32¢+11 G} 7.57e+11

29-11-2010 16:30:51

Intensity

05:00 07:00 09:00 11:00 13:00 15:00

Energy (Z Ge\)

1e30 cm-2s5-1

0.00005

=
L%y
o
=
=
E
S
a

0
05:00 0700 09:00 11:00 13:00 15:00

— ATLAS — ALUCE — CMS

Comments 29-11-2010 14:54:46 :
*xx STABLE BEAMS ***

All points optimized

AFS: 500ns_121b 113 114 0_4bpi31inj_IONS

BL B2

BIS status and SMP flags
Link Status of Beam Permits
Global Beam Permit
Setup Beam

Moveable Devices Allowed In

Stable Beams

MU IOEN Y ENABLED  [guisire-idil-g:ri ENABLED

Beam Presence
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DUMP CORE TDE

Beam 4
— I =

7m long C / C-C TDE in steel shrink- T 3000
cylinder, followed by 1m Al, 2m Fe 7000

N i . Beam Yiew o
1000 T of concrete shielding :’Eﬁ Graphite 177 glom® [ o]

Graphite 110 glem? o]

- e

Dilution Profils

This is the ONLY element in the
LHC that can withstand the impact
of the full 7 TeV beam !
Nevertheless, the dumped beam
must be painted to keep the peak
energy densities at a tolerable level !

Why graphite? If the material were
heavy, all the beam’s energy would

concentrate in the first half meter
of the block.
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The beam size has increased to an extent where the sigma is 1.6mm in both planes.

D68 BTVDD. 689339 B1
201040324 013:23:34 GO0000

20}

LU

v [mm|

LM}

—2iM}
{ (LY 200

20 [0

x [mm|

Lecture 5 and 6
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