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Abstract

We have written a Fortran programme BCVEGPY, which is an event generator for the hadronic

production of the Bc meson through the dominant hard subprocess gg → Bc(B
∗
c ) + b + c̄.

To achieve a compact programme, we have written the amplitude of the subprocess with the

particle helicity technique and made it as symmetric as possible, by decomposing the gluon self

couplings and then applying the symmetries. To check the programme, various cross sections

of the subprocess have been computed numerically and compared with those in the literature.

BCVEGPY is written in a PYTHIA-compatible format, thus it is easy to implement in PYTHIA.
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I. INTRODUCTION

Bc-physics has been attracting an increasing attention recently, due to the experimental

discovery of the Bc meson[1], and theoretical progress[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,

14, 15, 16, 17]. Since one can collect a high-statistics sample of Bc mesons only at high

energy hadronic colliders[2, 3, 5, 6, 7, 8, 9], we have re-written a generator for the hadronic

production of Bc. The generator is a Fortran program package called BCVEGPY.

The hadronic production of the Bc and B∗
c mesons[28] has been estimated by the authors

of Refs.[6, 10] with the fragmentation approach and by the authors of Refs.[7, 8, 9] with

the so-called ‘complete calculation’ approach i.e. to compute the production completely at

the lowest order (α4
s) in terms of the dominant subprocess of perturbative QCD (pQCD)

gg → Bc(B
∗
c ) + c̄ + b. Further note that since mb ≫ mc ≫ ΛQCD, apart from the fact

that c and b̄ quarks combine into Bc(B
∗
c ) non-perturbatively, the rest of the subprocess is

always ‘hard’ and can be well calculated with pQCD[7, 8, 9]. These two approaches have

different advantages but both of them are in the framework of pQCD, and attribute the non-

perturbative factor in the production to the decay constant, i.e. the non-relativistic wave

function of the Bc(B
∗
c ) at the origin (the former through the fragmentation function and the

latter directly). Within theoretical uncertainties, the two approaches can agree numerically,

especially when the component of gluon fragmentation is involved[10]. The fragmentation

approach is comparatively simple and can reach to leading logarithm order (LLO) of pQCD,

but is satisfied only in the case if one is only interested in the produced Bc(B
∗
c ) itself.

The complete calculation approach has the great advantage that it retains the information

about the c̄ and b quark (jets) associated with the Bc meson in the production. From the

experimental point of view this is a more relevant case. Therefore, we have written the

hadronic production programme for Bc mesons based on the complete calculation approach

(full pQCD complete calculation at the lowest order α4
s).

Since the non-perturbative factor in the subprocess gg → Bc(B
∗
c ) + · · ·, i.e. the decay

constant of the Bc(B
∗
c ) meson, can be calculated by means of the potential model for heavy

quark-antiquark systems[11], the estimates of the production are full theoretical predictions

of pQCD without additional experimental input. In view of future experimental studies

of the Bc(B
∗
c ) after the CDF discovery (RUN-I, at Tevatron), i.e., concerning the needs of

experimental feasibility studies for various topics of Bc(B
∗
c ) meson in hadronic collisions at
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Tevatron and LHC[29], we would like to write a paper on the Fortran package BCVEGPY

with detailed explanation. In addition, we emphasize here that, as explained later, the

present generator has been formulated in a very different way from those in Refs.[7, 8],

and through carefully comparing the results obtained by BCVEGPY with those obtained in

Refs.[7, 8], a solid and independent check of BCVEGPY is well made.

At LHC the beam luminosity and the production cross section (at such a high energy
√
S = 14TeV) are so high that the rate of producing Bc(B

∗
c ) events can be 108−9 per year.

At Tevatron, although the luminosity and production cross section are lower than at LHC,

the rate of producing Bc(B
∗
c ) events still is about 104−5 per year, only 3 ∼ 4 orders of

magnitude lower than at LHC. The Bc meson has sizable and abundant weak decay modes

relating directly to c or/and b̄ flavor respectively, so that with so high production such as

at LHC, even the detecting efficiencies being taken into account, one can reach a statistical

accuracy of 10−2 for most of the decay modes[12, 13, 14]. Thus there is an acute need for

a Bc(B
∗
c ) event generator in order to be able to perform feasibility studies, and this is why

we have written the present paper on BCVEGPY. A particularly interesting topic, which

is worth noting here, is the study of Bs − B̄s mixing and CP violation in Bs meson decays

through Bc(B
∗
c ) → Bs · · ·[3, 4]. The Bc meson has a very large branching ratio to decay

to a Bs meson (Br(Bc → Bs · · ·) ≃ several tens percents[12, 13, 14]), and the Bs mesons

obtained by such Bc decays are tagged precisely at the Bc decay vertex, if the charge of

the Bc meson and/or its decay products are measured. A large-statistics sample of tagged

Bs mesons at LHC, and even at Tevatron, offers a great potential for the interesting Bs

physics[3].

As pointed out in Ref.[7], according to pQCD there is another production mechanism by

a quark pair annihilation subprocess qq̄ → Bc(B
∗
c ) + c̄ + b. Nevertheless, the ‘luminosity’

of gluons is much higher than that of quarks in pp collisions (LHC) and in pp̄ collisions

(Tevatron), and there is a suppression factor due to the virtual gluon propagator in the

annihilation. Therefore the contribution from this mechanism is negligible compared to the

dominant one. The calculations in Refs.[6, 8, 9, 10] neglected the contribution from the

quark pair mechanism, and the BCVEGPY package follows the same approximation.

In order to make the programme very compact, we write BCVEGPY by applying the

‘helicity technique’ to the amplitude of the subprocess. The technique may be traced back

to the work in Ref.[18]. The helicity technique has been developed by the CALKUL
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collaboration[19, 20] for massless gauge theories. Further development for the massive

fermion case with Abelian gauge field(s) as well as for the massless fermion case with non-

Abelian gauge field(s) was done by several groups[21, 22, 23, 24]. When the helicities[30]

of all the external massless particles are fixed, CALKUL calculates the ‘probability rate’ in

the following way. First, Feynman diagrams with precise helicities for the external particles

are computed one by one for the concerned process with helicity techniques, and a complex

number for each Feynman diagram is obtained. Then all the obtained complex numbers are

summed up. Finally the squared modulus of the summed result is taken, averaging over the

helicities of the particles in initial state and summing over the helicities of the particles in

final state if an unpolarized case is considered. If a polarized process is considered, one needs

only to stop the calculation before averaging over the helicities of the particles in initiate

state and summing over the helicities of the particles in final state.

The massless spinor technique may, in fact, be applied to the case where massive

fermion(s) and non-Abelian gauge field(s) are involved in the concerned process, if a suit-

able ‘generalization’ could be done together with some further rearrangements. Our present

subprocess contains non-Abelian gluons and massive fermions. Thus, in order to make use

of the massless spinor technique for obtaining a compact result, we need a suitable general-

ization with appropriate rearrangements. We will describe the procedure here below. Our

strategy for the generalization is to convert the problem into an equivalent ‘massless’ one

and to extend the ‘symmetries’ as much as possible. Then we try to apply the symmetries

of the converted amplitude and the helicity technique to the present problem so as to make

the programme compact. According to pQCD, at order α4
s there are 36 Feynman diagrams

for the ‘hard’ subprocess gg → Bc+ c̄+b. To extend the symmetries for the amplitude corre-

sponding to the 36 diagrams, we neither consider the color factors nor distinguish the flavors

of the fermion lines at the moment. Then, these diagrams may be grouped into only a few

typical ones according to the fermion lines and the structures of the contained γ-matrices on

the lines in the Feynman diagrams, because of the Feynman diagram symmetries. To apply

the symmetries in writing up the program, we first focus on the numerator of the ampli-

tude related to each typical fermion line, and deal with the γ-matrices precisely. We then,

having suitable four-momentum set for the numerator and denominator, respectively imple-

ment proper numerator factors for the fermion lines: color factors, suitable denominator and

spinors (corresponding to the external lines) etc. Finally we obtain an exact and full typical

4



fermion line, which appears in Feynman diagrams. When all kinds of typical fermion line

factors, factors for external lines of gluons and gluon propagators are ‘assembled’, then the

full term, corresponding to the Feynman diagram of the amplitude, is achieved. The result-

ing program is indeed very compact and potentially reduces the execution time significantly.

In general, to write an amplitude according to helicities, each massive fermion line should

be decomposed into two light-like spinor lines, but this is not unique[19, 20, 21, 22, 23, 24].

Here we use the identity /k = |k+〉〈k + | + |k−〉〈k − | (k is a light-like four-momentum) to

simplify the fermion (quark) lines by spinor products.

To verify that the program BCVEGPY is correct, we check it by taking the same pa-

rameters as in Ref.[8], compute the cross-section of the subprocess gg → Bc(B
∗
c ) + c̄+ b by

integrating out the unobserved variables numerically, and compare the obtained results with

those in Ref.[8] carefully. Since BCVEGPY is based on helicity techniques which is totally

different from those in Ref.[8], the comparison is a very good check both for BCVEGPY and

for that in Ref.[8].

Since the mass difference between Bc[1,
1 S0] and B∗

c [1,
3 S1] is small, the B∗

c decays through

an electromagnetic transition (M1) B∗
c → Bc + γ with an almost 100% branching ratio and

the photon in the decay is quite soft, so the production of B∗
c can be considered as an

additional source of Bc production (with an additional soft photon). Furthermore, since

JP = 0− for Bc, the polarizations of b and/or c̄-jets will be lost during their hadronization,

so the polarization effects including those of b and/or c̄-jets in the production of Bc are

therefore not interesting, so BCVEGPY program calculates the process for the un-polarized

case only, although theoretically it can work out certain polarization effects due to B∗ and/or

b and/or c̄-jets.

We write the BCVEGPY package following the format of PYTHIA[25] so that the gener-

ator could be easily adapted into the PYTHIA environment. In this way our generator can

be used for generating complete events. To increase the Monte Carlo simulation efficiency

for high dimensional phase space integration, we set up a switch in BCVEGPY to choose

if the VEGAS program for obtaining the sampling importance function is used or not. We

also use several parameters, such as for the maximum differential cross sections etc, to meet

the needs for the initializations of PYTHIA.

This paper is organized as follows. In Section II we show how to extend the symmetries

by: focussing the γ-matrix strings of fermion lines in Feynman diagrams, disregarding color-
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and numeral factors etc; decomposing the three- and four-gluon coupling vertices; grouping

the decomposed diagrams; establishing the typical one in each group; applying the sym-

metries and helicity techniques to the problem. In Section III we outline the structure of

BCVEGPY, explain how to use the programme and test (check) the programme as stated in

the Introduction. Section IV summarizes the conclusions and future prospects. The details

about the helicity functions for the amplitude, polarization vector for B∗
c [

3S1], routines and

functions for the helicity amplitude are described in the Appendices.

II. THE HARD SUBPROCESS

Based on the factorization of perturbative QCD (pQCD), the hard subprocess play the

key role of the Bc generator. In hadron collisions at high energies, the subprocess gluon-

gluon fusion gg → Bc(B
∗
c ) + b + c̄ is the dominant one in hadronic production of Bc(B

∗
c )

mesons[31]. In the following sub-sections, we will show how to deal with this subprocess.

A. The amplitude for gg → Bc(B
∗
c ) + b+ c̄

At the lowest order α4
s, there are totally 36 Feynman diagrams as shown in Figs. 1-5

for the gluon-gluon fusion process gg → Bc + b + c̄, so accordingly there are 36 terms in

the production amplitude. As stated in the Introduction, we group the Feynman diagrams

into five sets according to the structure of the fermion lines. Here there are five subsets

as indicated in Figs. 1-5. To write the amplitude corresponding to the Feynman diagrams

explicitly, let us first focus on writing the color structures of the diagrams separately. In fact

there are five independent color factors, C1ij , C2ij , C3ij, C4ij and C5ij , where i, j = 1, 2, 3

are the color indices of the quarks c̄ and b respectively. They are

C1ij = (T cT cT aT b)ij =
N2 − 1

2N
(T aT b)ij ,

C2ij = (T cT cT bT a)ij =
N2 − 1

2N
(T bT a)ij ,

C3ij = (T cT aT cT b)ij =
−1

2N
(T aT b)ij ,

C4ij = (T cT bT cT a)ij =
−1

2N
(T bT a)ij ,

C5ij = −1

2
δijTr[T

aT b] . (1)
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FIG. 1: Feynman diagrams that can be directly grouped into the cc subset. Here i and j are the

color indices of c̄ and b respectively.

To make the final amplitude compact, we introduce two extra color factors, C ′
5ij and C ′

6ij,

which satisfy

C ′
5ij = C3ij − C5ij = (T cT aT bT c)ij =

1

2
δijTr[T

aT b] − 1

2N
(T aT b)ij ,

C ′
6ij = C4ij − C6ij = (T cT bT aT c)ij =

1

2
δijTr[T

bT a] − 1

2N
(T bT a)ij . (2)

All the color factors in the subprocess can be expressed by the above five independent

color factors, i.e. in the amplitude all the color factors may be written in terms of these

five explicitly. To obtain the desired result, the general commutation relation for the color

factors

[Ta, Tb] = ifabcTc (3)

has been applied to three- or four-gluon vertice of the Feynman diagrams, where fabc is the

antisymmetric SU(3) structure constant.

The terms of the amplitude corresponding to the grouped Feynman diagrams are written

as below.

The first group, Fig.1:

M1a = C2ij ūs(qb1)i
∫

d4q

(2π)4

{

γδ

χ̄P (q)

(qb1 + qb2)2
γδ

/k1 + /k2 − /qc2 +mc

(k1 + k2 − qc2)2 −m2
c

/ǫλ1

1 ·

/k2 − /qc2 +mc

(k2 − qc2)2 −m2
c

/ǫλ2

2

}

vs′(qc2) ,

M1b = C1ij ūs(qb1)i
∫ d4q

(2π)4

{

γδ

χ̄P (q)

(qb1 + qb2)2
γδ

/k1 + /k2 − /qc2 +mc

(k1 + k2 − qc2)2 −m2
c

/ǫλ2

2 ·
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/k1 − /qc2 +mc

(k1 − qc2)2 −m2
c

/ǫλ1

1

}

vs′(qc2) ,

M1c = C4ij ūs(qb1)i
∫ d4q

(2π)4

{

γδ

χ̄P (q)

(qb1 + qb2)2
/ǫλ1

1

/qc1 − /k1 +mc

(qc1 − k1)2 −m2
c

γδ·

/k2 − /qc2 +mc

(k2 − qc2)2 −m2
c

/ǫλ2

2

}

vs′(qc2) ,

M1d = C3ij ūs(qb1)i
∫

d4q

(2π)4

{

γδ

χ̄P (q)

(qb1 + qb2)2
/ǫλ2

2

/qc1 − /k2 +mc

(qc1 − k2)2 −m2
c

γδ·

/k1 − /qc2 +mc

(k1 − qc2)2 −m2
c

/ǫλ1

1

}

vs′(qc2) ,

M1e = C ′
6ij ūs(qb1)i

∫ d4q

(2π)4

{

γδ

χ̄P (q)

(qb1 + qb2)2
/ǫλ1

1

/qc1 − /k1 +mc

(qc1 − k1)2 −m2
c

/ǫλ2

2 ·

/qc1 − /k1 − /k2 +mc

(qc1 − k1 − k2)2 −m2
c

γδ

}

vs′(qc2) ,

M1f = C ′
5ij ūs(qb1)i

∫

d4q

(2π)4

{

γδ

χ̄P (q)

(qb1 + qb2)2
/ǫλ2

2

/qc1 − /k2 +mc

(qc1 − k2)2 −m2
c

/ǫλ1

1 ·

/qc1 − /k1 − /k2 +mc

(qc1 − k1 − k2)2 −m2
c

γδ

}

vs′(qc2) ,

M1g = (C2ij − C1ij)ūs(qb1)i
∫

d4q

(2π)4

{

γδ

χ̄P (q)

(qb1 + qb2)2
γδ

/k1 + /k2 − /qc2 +mc

(k1 + k2 − qc2)2 −m2
c

·

γαǫ
λ1

1µǫ
λ2

2ν

(k1 + k2)2

(

(k1 − k2)αgµν + (2k2 + k1)µgνα + (−2k1 − k2)νgµα

)

}

vs′(qc2) ,

M1h = (C ′
6ij − C ′

5ij)ūs(qb1)i
∫

d4q

(2π)4

{

γδ

χ̄P (q)

(qb1 + qb2)2

γαǫ
λ1

1µǫ
λ2

2ν

(k1 + k2)2

/qc1 − /k1 − /k2 +mc

(k1 + k2 − qc1)2 −m2
c

·

γδ

(

(k1 − k2)αgµν + (2k2 + k1)µgνα + (−2k1 − k2)νgµα

)

}

vs′(qc2) .

(4)

The second group, Fig.2:

M2a = (C ′
6ij)ūs(qb1)i

∫

d4q

(2π)4

{

γδ

/k1 + /k2 − /qb2 +mb

(k1 + k2 − qb2)2 −m2
b

/ǫλ1

1

/k2 − /qb2 +mb

(k2 − qb2)2 −m2
b

/ǫλ2

2 ·

χ̄P (q)

(qc1 + qc2)2
γδ

}

vs′(qc2) ,

M2b = (C ′
5ij)ūs(qb1)i

∫ d4q

(2π)4

{

γδ

/k1 + /k2 − /qb2 +mb

(k1 + k2 − qb2)2 −m2
b

/ǫλ2

2

/k1 − /qb2 +mb

(k1 − qb2)2 −m2
b

/ǫλ1

1 ·

χ̄P (q)

(qc1 + qc2)2
γδ

}

vs′(qc2) ,

M2c = (C4ij)ūs(qb1)i
∫

d4q

(2π)4

{

/ǫλ1

1

/qb1 − /k1 +mb

(qb1 − k1)2 −m2
b

γδ

/k2 − /qb2 +mb

(k2 − qb2)2 −m2
b

/ǫλ2

2 ·
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FIG. 2: Feynman diagrams that can be directly grouped into the bb subset. Here i and j are the

color indices of c̄ and b respectively.

χ̄P (q)

(qc1 + qc2)2
γδ

}

vs′(qc2) ,

M2d = (C3ij)ūs(qb1)i
∫

d4q

(2π)4

{

/ǫλ2

2

/qb1 − /k2 +mb

(qb1 − k2)2 −m2
b

γδ

/k1 − /qb2 +mb

(k1 − qb2)2 −m2
b

/ǫλ1

1 ·

χ̄P (q)

(qc1 + qc2)2
γδ

}

vs′(qc2) ,

M2e = (C2ij)ūs(qb1)i
∫

d4q

(2π)4

{

/ǫλ1

1

/qb1 − /k1 +mb

(qb1 − k1)2 −m2
b

/ǫλ2

2

/qb1 − /k1 − /k2 +mb

(qb1 − k1 − k2)2 −m2
b

γδ·

χ̄P (q)

(qc1 + qc2)2
γδ

}

vs′(qc2) ,

M2f = (C1ij)ūs(qb1)i
∫

d4q

(2π)4

{

/ǫλ2

2

/qb1 − /k2 +mb

(qb1 − k2)2 −m2
b

/ǫλ1

1

/qb1 − /k1 − /k2 +mb

(qb1 − k1 − k2)2 −m2
b

γδ·

χ̄P (q)

(qc1 + qc2)2
γδ

}

vs′(qc2) ,

M2g = (C ′
6ij − C ′

5ij)ūs(qb1)i
∫

d4q

(2π)4

{

γδ

/k1 + /k2 − /qb2 +mb

(k1 + k2 − qb2)2 −m2
b

γαǫ
λ1

1µǫ
λ2

2ν

(k1 + k2)2
·

(

(k1 − k2)αgµν + (2k2 + k1)µgνα + (−2k1 − k2)νgµα

) χ̄P (q)

(qc1 + qc2)2
γδ

}

vs′(qc2) ,

M2h = (C2ij − C1ij)ūs(qb1)i
∫

d4q

(2π)4

{

γαǫ
λ1

1µǫ
λ2

2ν

(k1 + k2)2

/qb1 − /k1 − /k2 +mb

(k1 + k2 − qb1)2 −m2
b

γδ ·

χ̄P (q)

(qc1 + qc2)2
γδ

(

(k1 − k2)αgµν + (2k2 + k1)µgνα + (−2k1 − k2)gµα

)

}

vs′(qc2) . (5)
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FIG. 3: Feynman diagrams that can be directly grouped into the cb or bc subsets, where the first

four diagrams belong to the cb subset, while the last four belong to the bc subset. Here i and j

are the color indices of c̄ and b respectively.

The third group, Fig.3:

M3a = C1ij ūs(qb1)/ǫ
λ2

2

/qb1 − /k2 +mb

(qb1 − k2)2 −m2
b

i
∫

d4q

(2π)4
γδ

χ̄P (q)

(k1 − qc1 − qc2)2
γδ

/k1 − /qc2 +mc

(k1 − qc2)2 −m2
c

·

/ǫλ1

1 vs′(qc2) ,

M3b = C3ij ūs(qb1)/ǫ
λ2

2

/qb1 − /k2 +mb

(qb1 − k2)2 −m2
b

i
∫

d4q

(2π)4
γδ

χ̄P (q)

(k1 − qc1 − qc2)2
/ǫλ1

1

/qc1 − /k1 +mc

(qc1 − k1)2 −m2
c

·

γδvs′(qc2) ,

M3c = C3ij ūs(qb1)i
∫

d4q

(2π)4
γδ

/k2 − /qb2 +mb

(k2 − qb2)2 −m2
b

/ǫλ2

2

χ̄P (q)

(k1 − qc1 − qc2)2
γδ

/k1 − /qc2 +mc

(k1 − qc2)2 −m2
c

·

/ǫλ1

1 vs′(qc2) ,

M3d = C ′
5ij ūs(qb1)i

∫

d4q

(2π)4
γδ

/k2 − /qb2 +mb

(k2 − qb2)2 −m2
b

/ǫλ2

2

χ̄P (q)

(k1 − qc1 − qc2)2
/ǫλ1

1

/qc1 − /k1 +mc

(qc1 − k1)2 −m2
c

·

γδvs′(qc2) ,

M3e = C2ij ūs(qb1)/ǫ
λ1

1

/qb1 − /k1 +mb

(qb1 − k1)2 −m2
b

i
∫ d4q

(2π)4
γδ

χ̄P (q)

(k2 − qc1 − qc2)2
γδ

/k2 − /qc2 +mc

(k2 − qc2)2 −m2
c

·

/ǫλ2

2 vs′(qc2) ,

M3f = C4ij ūs(qb1)/ǫ
λ1

1

/qb1 − /k1 +mb

(qb1 − k1)2 −m2
b

i
∫ d4q

(2π)4
γδ

χ̄P (q)

(k2 − qc1 − qc2)2
/ǫλ2

2

/qc1 − /k2 +mc

(qc1 − k2)2 −m2
c

·

γδvs′(qc2) ,

M3g = C4ij ūs(qb1)i
∫

d4q

(2π)4
γδ

/k1 − /qb2 +mb

(k1 − qb2)2 −m2
b

/ǫλ1

1

χ̄P (q)

(k2 − qc1 − qc2)2
γδ

/k2 − /qc2 +mc

(k2 − qc2)2 −m2
c

·

/ǫλ2

2 vs′(qc2) ,

M3h = C ′
6ij ūs(qb1)i

∫

d4q

(2π)4
γδ

/k1 − /qb2 +mb

(k1 − qb2)2 −m2
b

/ǫλ1

1

χ̄P (q)

(k2 − qc1 − qc2)2
/ǫλ2

2

/qc1 − /k2 +mc

(qc1 − k2)2 −m2
c

·

10



FIG. 4: Feynman diagrams with only one three-gluon vertex, which can not be directly grouped

into the cc, bb, cb and bc subsets. Here i and j are the color indices of c̄ and b respectively.

γδvs′(qc2) . (6)

The fourth group, Fig.4:

M4a = (C4ij − C2ij)ūs(qb1)i
∫

d4q

(2π)4
γδ

χ̄P (q)

(qb1 + qb2)2

γαǫ
λ1

1µ

(k1 − qb1 − qb2)2

(

(k1 + qb1 + qb2)αgµδ +

(k1 − 2qb1 − 2qb2)µgαδ + (qb1 + qb2 − 2k1)δgµα

) /k2 − /qc2 +mc

(k2 − qc2)2 −m2
c

/ǫλ2

2 vs′(qc2) ,

M4b = (−C5ij)ūs(qb1)i
∫ d4q

(2π)4
γδ

χ̄P (q)

(qb1 + qb2)2
/ǫλ2

2

/qc1 − /k2 +mc

(qc1 − k2)2 −m2
c

γαǫ
λ1

1µ

(k1 − qb1 − qb2)2
·

(

(k1 + qb1 + qb2)αgµδ + (k1 − 2qb1 − 2qb2)µgαδ + (qb1 + qb2 − 2k1)δgµα

)

vs′(qc2) ,

M4c = (C3ij − C1ij)ūs(qb1)i
∫ d4q

(2π)4
γδ

χ̄P (q)

(qb1 + qb2)2

γαǫ
λ2

2µ

(k2 − qb1 − qb2)2

(

(k2 + qb1 + qb2)αgµδ +

(k2 − 2qb1 − 2qb2)µgαδ + (qb1 + qb2 − 2k2)δgµα

) /k1 − /qc2 +mc

(k1 − qc2)2 −m2
c

/ǫλ1

1 vs′(qc2) ,

M4d = (−C5ij)ūs(qb1)i
∫ d4q

(2π)4
γδ

χ̄P (q)

(qb1 + qb2)2
/ǫλ1

1

/qc1 − /k1 +mc

(qc1 − k1)2 −m2
c

γαǫ
λ2

2µ

(k2 − qb1 − qb2)2
·

(

(k2 + qb1 + qb2)αgµδ + (k2 − 2qb1 − 2qb2)µgαδ + (qb1 + qb2 − 2k2)δgµα

)

vs′(qc2) ,

M4e = (C1ij − C3ij)ūs(qb1)i
∫ d4q

(2π)4
/ǫλ2

2

/qb1 − /k2 +mb

(qb1 − k2)2 −m2
b

γαǫ
λ1

1µ

(k1 − qc1 − qc2)2

χ̄P (q)

(qc1 + qc2)2
γδ ·

(

(k1 + qc1 + qc2)αgµδ + (k1 − 2qc1 − 2qc2)µgαδ + (qc1 + qc2 − 2k1)δgµα

)

vs′(qc2) ,

M4f = (C5ij)ūs(qb1)i
∫

d4q

(2π)4

γαǫ
λ1

1µ

(k1 − qc1 − qc2)2

/k2 − /qb2 +mb

(k2 − qb2)2 −m2
b

/ǫλ2

2

χ̄P (q)

(qc1 + qc2)2
γδ ·

(

(k1 + qc1 + qc2)αgµδ + (k1 − 2qc1 − 2qc2)µgαδ + (qc1 + qc2 − 2k1)δgµα

)

vs′(qc2) ,
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FIG. 5: Feynman diagrams with two three-gluon vertices or with a four-gluon vertex, which can

not be directly grouped into the cc, bb, cb and bc subsets. Here i and j are the color indices of c̄

and b respectively.

M4g = (C2ij − C4ij)ūs(qb1)i
∫

d4q

(2π)4
/ǫλ1

1

/qb1 − /k1 +mb

(qb1 − k1)2 −m2
b

γαǫ
λ2

2µ

(k2 − qc1 − qc2)2

χ̄P (q)

(qc1 + qc2)2
γδ ·

(

(k2 + qc1 + qc2)αgµδ + (k2 − 2qc1 − 2qc2)µgαδ + (qc1 + qc2 − 2k2)δgµα

)

vs′(qc2) ,

M4h = (C5ij)ūs(qb1)i
∫

d4q

(2π)4

γαǫ
λ2

2µ

(k2 − qc1 − qc2)2

/k1 − /qb2 +mb

(k1 − qb2)2 −m2
b

/ǫλ1

1

χ̄P (q)

(qc1 + qc2)2
γδ ·

(

(k2 + qc1 + qc2)αgµδ + (k2 − 2qc1 − 2qc2)µgαδ + (qc1 + qc2 − 2k2)δgµα

)

vs′(qc2) . (7)

The fifth group Fig.5:

M5a = (C2ij − C4ij − C5ij)ūs(qb1)i
∫ d4q

(2π)4

γαǫ
λ1

1µ

(qb1 + qb2)2

χ̄P (q)

(k2 − qc1 − qc2)2

γβǫ
λ2

2ν

(qc1 + qc2)2
·

(

(2k1 − qb1 − qb2)αgµδ + (2qb1 + 2qb2 − k1)µgαδ + (−qb1 − qb2 − k1)δgµα

)

·
(

(k2 + qc1 + qc2)δgνβ + (k2 − 2qc1 − 2qc2)νgβδ + (−2k2 + qc1 + qc2)βgδν

)

vs′(qc2) ,

M5b = (C1ij − C3ij − C5ij)ūs(qb1)i
∫

d4q

(2π)4

γαǫ
λ2

2µ

(qb1 + qb2)2

χ̄P (q)

(k1 − qc1 − qc2)2

γβǫ
λ1

1ν

(qc1 + qc2)2
·

(

(2k2 − qb1 − qb2)αgµδ + (2qb1 + 2qb2 − k2)µgαδ + (−qb1 − qb2 − k2)δgµα

)

·
(

(k1 + qc1 + qc2)δgνβ + (k1 − 2qc1 − 2qc2)νgβδ + (−2k1 + qc1 + qc2)βgδν

)

vs′(qc2) ,

M5c = (C1ij + C4ij − C3ij − C2ij)ūs(qb1)i
∫

d4q

(2π)4

γαǫ
λ1

1µ

(qb1 + qb2)2

χ̄P (q)

(k1 + k2)2

γβǫ
λ2

2ν

(qc1 + qc2)2
·

(

(k1 + k2 + qb1 + qb2)βgαδ + (k1 + k2 − 2qb1 − 2qb2)δgαβ + (qb1 + qb2 − 2k1 − 2k2)αgβδ

)

·
(

(k1 − k2)δgνµ + (2k2 + k1)µgνδ + (−2k1 − k2)νgδµ

)

vs′(qc2) ,
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M5d = ūs(qb1)i
∫ d4q

(2π)4

γαǫ
λ1

1µ

(qb1 + qb2)2
χ̄P (q)

γβǫ
λ2

2ν

(qc1 + qc2)2
·

(

(C2ij + C3ij − C1ij − C4ij)(gµβgνα − gµαgνβ) + (C5ij − C1ij + C3ij) ·

(gµνgβα − gµαgνβ) + (C5ij − C2ij + C4ij)(gµνgαβ − gµβgνα)
)

vs′(qc2) . (8)

In Eqs. (4-8), k1, k2 and ǫ1, ǫ2 are the momenta and the polarization vectors of the gluons;

qc1, qb1 are the momenta of c and b quarks and qc2, qb2 are the momenta of c̄ and b̄ anti-

quarks, respectively. Note that in all the above equations we have omitted the factor g4
s

(the fourth power of the QCD coupling constant), so we should consider it when evaluating

the final result. For convenience, we group the terms (Feynman diagrams) according to the

character of the gluon attachment to the fermion lines. The details will be explained in the

next sections.

Under the non-relativistic approximation, for the weak binding system of (cb̄) we have

MBc
= MB∗

c
= M ≃ mb +mc , qc1 =

mc

M
P , qb2 =

mb

M
P , (9)

and the wave function χ̄P (q) can be written as

χ̄P (q) = φ(q)
1

2
√
M

(αγ5 + β/ǫ(sz))(/P +M) , (10)

where α = 1, β = 0 for the pseudoscalar Bc([1
1S0]) and α = 0, β = 1 for the vector

B∗
c ([1

3S1]). The radial part of the momentum space wave function φ(q) is related to the

space-time wave function at origin by the integration:

i
∫

d4q

(2π)4
φ(q) = ψ(0) .

B. Motivation and basic formulae for decomposing the gluon self-coupling vertices

In Ref.[21], a method is proposed for treating the amplitude of the processes, which

contain massless fermions and non-abelian gauge boson(s), in order to make the result

compact and to avoid numerical cancellations between very large numbers. The authors of

Ref.[21] group the Feynman diagrams of the concerned process into gauge-invariant subsets

according to how the lines of the gauge bosons attach to the fermion lines. They then choose

convenient gauges for the subsets independently of each other (not a unique gauge for the

whole process), and finally they obtain a compact result, when all terms of the amplitude are

13



written according to the helicities of the fermions. The key point of the approach (helicity

technique) is that when all the massless fermions are written on helicity state basis, then it is

straightforward to choose convenient gauges for all subsets. If massive fermions are involved

in the concerned process and one wishes to use the same technique, then one needs to

generalize it. Some rearrangements, such as replacing one massive fermion by two massless

fermions etc, should be made, and the gauge choice for each subset is more complicated

than in the massless cases. In the present case for the subprocess gg → Bc + b+ c̄, a unique

gauge for the whole amplitude is more practical. Apart from the gauge choice, we apply the

techniques of Ref. [21] as much as possible to make the program compact. The polarization

vectors of the gluons are replaced by γ-matrix elements of massless fermion helicity states and

the color factors are dealt with independently from the Dirac γ-matrix strings. Furthermore,

we try to make the amplitude more symmetric by applying a decomposition of the terms

when writing the program. This is achieved by decomposing first the terms, which contain

three- or/and four-gluon vertices, into terms without self-interactions of gluons. Then,

according to the structure of the contained fermion lines, some of the decomposed terms

are chosen as ‘coordinators’, which would be called as the typical ones, so that all the

other terms, referring to the Feynman diagrams, may be ‘expressed’ by the ‘typical ones’.

Therefore when writing the program, only different ’typical Feynman diagrams’ need to

be written precisely, while the non-typical ones may be generated by means of the typical

ones according to the relationship (expression). In this section, we show how to decompose

the terms in the Feynman diagrams containing three- or four-gluon vertex(ices) into terms

similar to the typical ones, disregarding the difference in color factors, and list the results

for the typical Feynman diagrams.

First of all, let us introduce a massless fermion with an arbitrary light-like reference

momentum q (q2 = 0) and its relevant helicity spinors (|q±〉 = 1±γ5

2
|q〉 and /q|q〉 = 0), and

then construct the requested massive fermion four-spinors u(p) and v(p) with momentum

p (p2 = m2) in terms of |q±〉 as follows:

us(p) =
1√

2p · q (/p+m)|qh〉 ,

vs(p) =
1√

2p · q (/p−m)|q−h〉 , (11)

where s = ±1
2

is the spin of the massive spinors, while h = ± is the helicity of the massless

spinor. For convenience we adopt the explicit form for the polarization vectors ǫ± of the gluon

14



with momentum k as in CALKUL. When the helicity states |k±〉 and |q′±〉 of two massless

fermions are defined as |q±〉, but the fermions have a light-like momentum k (k2 = 0) and a

referred one q′ (q′2 = 0) respectively, the polarization vectors ǫ± of the gluon with momentum

k may be represented as follows:

ǫ+µ (k, q′) =
〈q′−|γµ|k−〉√

2〈q′ · k〉
,

ǫ−µ (k, q′) =
〈q′+|γµ|k+〉√

2〈q′ · k〉∗
,

/ǫ+(k, q′) =

√
2

〈q′ · k〉(|k−〉〈q
′
−| + |q′+〉〈k+|) ,

/ǫ−(k, q′) =

√
2

〈q′ · k〉∗ (|k+〉〈q′+| + |q′−〉〈k−|) . (12)

Throughout the paper 〈q′ · k〉 and 〈q′ · k〉∗ denotes 〈q′−|k+〉 and its complex conjugation

respectively.

Because the light-like momenta q and q′ can be chosen arbitrarily, we choose them to

be the same as a light-like momentum q0, which is the reference momentum for all massive

spinors and gluon polarization vectors. We take one gauge for the whole set of 36 Feynman

diagrams, that is convenient here and different from CALKUL where different gauges are

taken for different gauge-invariant subsets.

The gluon self-coupling vertices do not adapt well for being simplified by using the po-

larization vector in calculating the amplitude. Hence an effort to replace the part with

the gluon self-coupling of the diagrams by the so-called QED-like ones (without gluon self-

coupling) is described here. This approach is not straightforward, due to the fact that the

gluon self-coupling diagrams with massive quarks can not be mapped completely into the

QED-like diagrams as in the case of the massless quark condition[21]. In the massive quark

case, some additional functions need to be introduced. Fortunately, for the ‘simple’ subpro-

cess, these ‘extra’ functions for the three-gluon vertices are just parts of the diagrams with

four-gluon vertices. Thus the diagrams involving four-gluon coupling vertices just need to

be decomposed according to their color factors and there is no need to reduce their γ matrix

and spinor factors any further.

To decompose Feynman diagrams with self-interactions into those without any, we need

to deal with some of the so-called ‘basic structures’. The number of the ‘basic structures’

required for a specific process increases with the number of the gluons involved in the
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concerned process. For the subprocess, gg → Bc(B
∗
c ) + b+ c̄, to convert the necessary parts

to the ‘basic structures’, only the parts containing a three-gluon coupling vertex have to be

decomposed. Thus let us outline the decomposition for the concerned subprocess.

The decomposition of a three-gluon coupling vertex is shown in Fig.6 (the first structure):

a three-gluon vertex fabcTµνδ(k1, K, k2) through a gluon propagator −igvv′/K
2 couples to a

quark line with a quark-gluon-quark vertex Tbγν′, where K = −(k1 + k2) = −(Q+Q′), and

fabc, Tb are color factors at the two vertices. It is

Mac
µδ(k1, k2, Q,Q

′) = −g2
sf

abcTbTµνδ(k1, K, k2)
−igsg

vv′

K2
γν′ , (13)

where Q and Q′ are the momenta of the fermion legs at the vertex. Since

Tµνδ(k1, K, k2) = (k1 −K)δgµν + (K − k2)µgνδ + (k2 − k1)νgµδ , (14)

so the precise expression is

Mac
µδ(k1, k2, Q,Q

′) = g2
sf

abcTb

i

K2

(

(k1 +Q+Q′)δγµ + k1µγδ − /Q′γµγδ − γµ/Q
′γδ

−γδ/Qγµ − γδγµ/Q+ (/Q+ /Q′ − 2/k1)gµδ

)

= g2
sf

abcTb

i

K2

(

γδ(/k1 − /Q+m)γµ − γµ(/k2 − /Q+m)γδ +

(/Q′ −m)(γδγµ − gµδ) +

(γµγδ − gµδ)(/Q+m) + k2δγµ − k1µγδ

)

. (15)

If the factor g2
s , the propagator scalar factor and the color factor are disregarded, and the

symbol ≃ is used for an equality modulo these factors, we have

Mac
µδ ≃ γδ(/k1 − /Q+m)γµ − γµ(/k2 − /Q+m)γδ + (/Q′ −m)(γδγµ − gµδ)

+(γµγδ − gµδ)(/Q+m) + k2δγµ − k1µγδ + · · · , (16)

where m is the mass of the fermion. Here the gluons and fermions may not be on-shell. If

the first and the second terms on the right-hand side are embedded in the diagrams, the

basic QED-like diagrams may be obtained, while the rest terms · · · on the right-hand side

can be absorbed into several extra functions.

To relate to the ‘basic structures’, two further decompositions are shown in Fig.7

(the second structure) and Fig.8 (the third structure) respectively: a three-gluon vertex
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FIG. 6: The three-gluon coupling vertex is decomposed as in Eq.(16): the first two terms are the

‘basic QED-like’ terms and the ‘remaining’ terms are expressed by several extra basic functions.

FIG. 7: Reduction of the basic structure with a three gluon vertex: the first two terms correspond

to the basic QED-like diagrams and the symbol ‘×’ means a quark gluon vertex Tdγα.

fabcTµνδ(k1, k1 + k2, k2) is coupled to a quark line, which has two vertices of quark-gluon-

quark Tbγν and Tdγα. To be precise, we label the latter vertex with the symbol ‘×’ on the

quark line. In the present case the two external quark lines are both on-shell and then these

two structures can be simplified by using the on-shell conditions

ū(Q′)(/Q′ −m) = 0 , (/Q+m)v(Q) = 0 . (17)
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The contribution from the corresponding part in Fig.7 is:

Macd
µδα(k1, k2, Q,Q

′) = −gsf
abcTbTdū(Q

′)γα

i(/k1 + /k2 − /Q+m)

(k1 + k2 −Q)2 −m2
·

Tµνδ(k1, K, k2)
−igsg

vv′

K2
γν′v(Q) . (18)

With Eq.(16) and the on-shell condition Eq.(17) for the two external fermion legs, we

obtain

Macd
µδα(k1, k2, Q,Q

′) ≃ ū(Q′)γα(/k1 + /k2 − /Q+m)
(

γδ(/k1 − /Q+m)γµ − γµ(/k2 − /Q+m)γδ

)

v(Q)

+
(

m2
1 +m2

2 + 2k1 · k2 − 2Q · k1 − 2Q · k2

)

ū(Q′)γα(γδγµ − gµδ)v(Q) +

ū(Q′)γα

(

k2δ(/k1 + /k2)γµ − k1µ(/k1 + /k2)γδ − 2k2δQµ + 2k1µQδ

)

v(Q)

= ū(Q′)γα(/k1 + /k2 − /Q+m)
(

γδ(/k1 − /Q+m)γµ − γµ(/k2 − /Q+m)γδ

)

v(Q)

+(c1 ·X) + · · · , (19)

where ‘≃’ means that the factor g2
s , the propagator scalar factor and the color factor have

been omitted. The first term is for the basic QED-like diagrams. The second term (c1 ·X)

where

c1 = m2
1 +m2

2 + 2k1 · k2 − 2Q · k1 − 2Q · k2

and

X = ū(Q′)γα{γδγµ − gµδ}v(Q)

will be treated below. The third term ‘· · ·’, in fact, does not contribute to the amplitude, no

matter whether the gluons are virtual or real. The proof is that when both the concerned

gluons are real, it is easy to show that the remaining terms give zero contribution by using the

relation ǫ(kl) ·kl = 0 (l = 1, 2). When one of the concerned gluons is virtual, the gluon with

momentum k2 for example, k2δ will always couple to a ‘simple’ quark line as ū(R)γδv(R
′) at

the lowest order for the amplitude of the considered process gg → Bc(B
∗
c ) + c̄+ b, where u

and v are the quark and anti-quark spinors, and k2 = R+R′ (the momenta R, R′ satisfy the

on-shell condition: R2 = R′2 = m2, where m is the mass of the quark). It is easy to show

that the contribution of the remaining terms is zero by using a similar on-shell condition as

Eq.(17). Therefore, in Fig.7 and in the following Fig.8, the remaining terms have not been

shown explicitly.
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FIG. 8: Dividing the basic topology including the three gluon vertex, where the first two terms

correspond to the ‘basic QED-like’ diagrams and the symbol ‘×’ means a quark gluon vertex Tdγα.

In the same way as above, the contribution from the corresponding part in Fig.8 is:

Macd
µδα(k1, k2, Q,Q

′) ≃ ū(Q′)
(

γδ(/Q
′ − /k2 +M)γµ − γµ(/Q′ − /k1 +M)γδ

)

(/Q′ − /k1 − /k2 +M) ·

γαv(Q) +
(

m2
1 +m2

2 + 2k1 · k2 − 2Q′ · k1 − 2Q′ · k2

)

ū(Q′)(γδγµ − gµδ) ·

γαv(Q) + ū(Q′)
(

−k2δγµ(/k1 + /k2) + k1µγδ(/k1 + /k2) + 2k2δQ
′
µ +

2k1µQ
′
δ

)

γαv(Q) + (c2 · Y ) + · · · , (20)

where again the factor g2
s , the scalar factor of the propagators and the color factor have

been omitted. The first two terms correspond to the basic QED-like diagrams, and the term

which is expressed by (c2 · Y ) is defined as

c2 = m2
1 +m2

2 + 2k1 · k2 − 2Q′ · k1 − 2Q′ · k2 ,

where Y is a new extra function

Y = ū(Q′){γδγµ − gµδ}γαv(Q).

Similarly as for the second structure in Eq.(19), the remaining terms in the present structure

contribute nothing, thus in Fig.8, they have not been shown explicitly.

Having made all the preparations above, and performing all the possible interchanges,

such as gluon exchange, quark and anti-quark exchange, we relate each of the terms in

the diagrams to a combination of those with the basic QED-like diagrams (‘coordinators’),

including the introduced two ‘extra’ functions as well.
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C. The decomposition

The Bc meson is a double-heavy weak-binding state. According to pQCD each term of

the amplitude for the subprocess may be factorized into two factors: that of perturbative

gg → b + b̄ + c + c̄ (all the quarks are on shell) and that of non-perturbative c + b̄ → Bc.

The binding wave function in the Bethe-Salpeter framework may be used to dictate the

non-perturbative one, and approximately written as Eq.(10). To carry out the factorization

of the amplitude, one may apply Eq.(10) and the two equations:

/qc1 +mc =
∑

s

u(qc1, s)ū(qc1, s) ≃ α1(/P +M) ,

/qb2 −mb =
∑

s

v(qb2, s)v̄(qb2, s) ≃ −α2(/P +M) (21)

to each term in the amplitude in Eqs.(4-8) with the corresponding factors χ̄P (q).

Then the general structure of the amplitude in ‘explicit helicity’ form turns to

M
(λ1,λ4,λ5,λ6)
i (qb1, qb2, qc1, qc2, k1, k2) =

∑

λ2,λ3

CiXiD1B
(λ1,λ2,λ3,λ4,λ5,λ6)
F i (qb1, qb2, qc1, qc2, k1, k2) ·

D2B
(λ2,λ3)
Bc(B∗

c )(qb2, qc1), (22)

where i = 1, · · · , 36 (or labelled as Feynman diagrams: 1a, 1b, · · · , 5d, respectively), λj (j =

1, · · · , 6) denote the helicities (spins) of the quarks and gluons respectively appearing in the

two factorized ‘processes’ gg → b + b̄ + c + c̄ and c + b̄ → Bc. Note that from now on,

we change the notation of the helicities of the particles in the processes as: λ1 denotes the

helicity of b, λ2 that of b̄, λ3 that of c, λ4 that of c̄; whereas λ5, instead of λ1 in Eqs.(4-8),

denotes that of gluon-1 and λ6, instead of λ2 in Eqs.(4-8), denotes that of gluon-2. Here

Ci, Xi denote the color factor and the scalar factor from all the propagators as a whole for

the ith-diagram, respectively. B
(λ1,λ2,λ3,λ4,λ5,λ6)
F i (qb1, qb2, qc1, qc2, k1, k2) and B

(λ2,λ3)
Bc(B∗

c )(qb2, qc1)

are the amplitudes corresponding to the ‘free quark part’ g(k1, λ5)g(k2, λ6) → b(qb1, λ1) +

b̄(qb2, λ2) + c(qc1, λ3) + c̄(qc2, λ4) (all the quarks are on-shell) and the ‘bound state part’

c(qc1, λ3) + b̄(qb2, λ2) → Bc(B
∗
c ), respectively. Substituting Eq.(11), we have

B
(λ1,λ2,λ3,λ4,λ5,λ6)
F i (qb1, qb2, qc1, qc2, k1, k2) = 〈q0λ1

|(/qb1 +mb)Γ1i(/qb2 −mb)|q0λ2
〉 ·

〈q0λ3
|(/qc1 +mc)Γ2i(/qc2 −mc)|q0λ4

〉 , (23)

B
(λ2,λ3)
Bc(B∗

c )(qb2, qc1) = 〈q0λ2
|(αγ5 + β/ǫ(sz))

(/P +M)

2
√
M

ψ(0)|q0λ3
〉 ,

(α = 1, β = 0 , for Bc[1
1S0]; α = 0, β = 1 , for B∗

c [1
3S1]) (24)
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where |q0λr〉 and 〈q0λr| (λr = ±, r = 1, · · · , 4) are the introduced helicity states of the

massless fermion q0 which specifically relate to those of massive fermions with the mo-

mentum p and mass m as in Eq.(11), Γ1i,2i are the explicit strings of Dirac γ matrices

corresponding to i-th Feynman diagram which contain the gluon helicities λ5 and λ6.

D1 = 1√
2qb1·q0

1√
2qb2·q0

1√
2qc1·q0

1√
2qc2·q0

and D2 = 1√
2qc1·q0

1√
2qb2·q0

are the two common normal-

ization factors.

The function D2B
(λ2,λ3)
Bc(B∗

c )(qb2, qc1), which contains the bound state wave function, is:

D2B
(λ2,λ3)
Bc

(qb2, qc1) =
ψ(0)

√
M

2
√
mbmc

δλ2,λ3
(δλ2− − δλ2+) (25)

for Bc[
1S1], and

D2B
(λ2,λ3)
B∗

c
(qb2, qc1) =

ψ(0)
√
M

2
√
mbmc

δλ2,λ3
(δλ2+ + δλ2−)

(

Mǫ(sz) · q0
P · q0

)

+
ψ(0)

√
M

2
√
mbmc

(

1

2P · q0

)

·

〈q0λ2
|/ǫ(sz)/P |q0λ3

〉 (26)

for B∗
c [

3S1].

These 36 functions, B
(λ1,λ2,λ3,λ4,λ5,λ6)
F i (qb1, qb2, qc1, qc2, k1, k2), can be constructed by nine

‘basic ones’ which correspond to Fig.3a, Fig.3b, Fig.3c, Fig.3d, Fig.5d (two basic functions),

Fig.1a, Fig.1c and Fig.1e, and by performing all the possible interchanges of the initial

gluons and the two quark lines. In fact, the functions which correspond to Fig.3c and Fig.3d

can be obtained from those in Fig.3a and Fig.3b by interchanging the initial gluons and the

quark lines in the diagrams, and in the following section we will show that the functions

corresponding to Fig.1a and Fig.1c can also be expressed by other seven ‘basic functions’,

although here we still treat those four functions as ‘basic ones’, in order to treat them on

an equal footing.

We use Em,j,k(qb1, qb2, qc1, qc2, k1, k2) , (m = 1, 2, · · · , 9; j = 1, · · · , 4; k = 1, 2, · · ·64) to

denote the ‘basic functions’, where k denotes 64 possible helicities (spins) corresponding

to possible ‘values’ of (λ1, λ2, λ3, λ4, λ5, λ6) as shown in Table I, and the correspondences

of the functions to the Feynman diagrams are shown in Table II and Table III. Here j

means the four possible interchanges: 1 means identical (without any interchange), 2 means

interchange of the gluons, 3 means interchange of the quark and the anti-quark, and 4 means

interchange of the gluons and the quark and anti-quark. When applying the interchange

among the particles, the symmetries of the decomposed amplitude guarantee that every
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TABLE I: The correspondence between k = 1, · · · , 64 and λ1 = ±, λ2 = ±, λ3 = ±, λ4 = ±, λ5 =

±, λ6 = ±, which stand for the helicities of the particles in the process.

k λ1 λ2 λ3 λ4 λ5 λ6 k λ1 λ2 λ3 λ4 λ5 λ6 k λ1 λ2 λ3 λ4 λ5 λ6 k λ1 λ2 λ3 λ4 λ5 λ6

1 + + + + + + 17 − − − − − − 33 + + − + + + 49 − − + − − −

2 + + + + + − 18 − − − − − + 34 + + − + + − 50 − − + − − +

3 + + + + − + 19 − − − − + − 35 + + − + − + 51 − − + − + −

4 + + + + − − 20 − − − − + + 36 + + − + − − 52 − − + − + +

5 + + + − + + 21 − − − + − − 37 + + − − + + 53 − − + + − −

6 + + + − + − 22 − − − + − + 38 + + − − + − 54 − − + + − +

7 + + + − − + 23 − − − + + − 39 + + − − − + 55 − − + + + −

8 + + + − − − 24 − − − + + + 40 + + − − − − 56 − − + + + +

9 + − − + + + 25 − + + − − − 41 + − + + + + 57 − + − − − −

10 + − − + + − 26 − + + − − + 42 + − + + + − 58 − + − − − +

11 + − − + − + 27 − + + − + − 43 + − + + − + 59 − + − − + −

12 + − − + − − 28 − + + − + + 44 + − + + − − 60 − + − − + +

13 + − − − + + 29 − + + + − − 45 + − + − + + 61 − + − + − −

14 + − − − + − 30 − + + + − + 46 + − + − + − 62 − + − + − +

15 + − − − − + 31 − + + + + − 47 + − + − − + 63 − + − + + −

16 + − − − − − 32 − + + + + + 48 + − + − − − 64 − + − + + +

term may be expressed by the basic functions with helicities and momenta of the particles

in the process. For all the functions Em,j,k, with m, j being fixed, they are related to each

other by proper complex conjugation with or without changing the whole sign. To write the

program, and to apply these relations of the element functions among different helicity states

conveniently, we take the correspondence between k and (λ1, λ2, λ3, λ4, λ5, λ6) as described

in Table I. Thus we have now

B
(λ1,λ2,λ3,λ4,λ5,λ6)
F i (qb1, qb2, qc1, qc2, k1, k2) ≡ B

(k)
F i (qb1, qb2, qc1, qc2, k1, k2)

=
9
∑

m=1

4
∑

j=1

fi,m,jEm,j,k . (27)

Here i and k denote the 36 Feynman diagrams (terms) and the 64 possible helicities of all the
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TABLE II: The expansion coefficients fi,m,j for the functions B
(k)
F i (qb1, qb2, qc1, qc2, k1, k2) which are

grouped into the cb subset directly or indirectly through a proper decomposition (the coefficients

fi,m,j are not listed here if they are equal to zero in a whole row).

j = 1

m 1 2 3 4 5

f3a,m,j 1 0 0 0 0

f3b,m,j 0 1 0 0 0

f3d,m,j 0 0 1 0 0

f3e,m,j 0 0 0 1 0

f4c,m,j -1 0 1 0 -2(qc2 · k1)

f4d,m,j 0 -1 0 1 2(qc1 · k1)

f4f,m,j 1 -1 0 0 2(qb1 · k2)

f4g,m,j 0 0 1 -1 -2(qb2 · k2)

f5b,m,j 1 -1 -1 1 sb + sc − s2

particles in the two factorized processes. The correspondence of helicities on k = 1, · · · , 64 is

given as described in Table I. The 36 functions i = 1, · · · , 36 are labelled as the 36 Feynman

diagrams, i.e. i = 1a, 1b, · · · , 5d. The coefficient fi,m,j corresponding to QED-like diagrams

can be directly read out easily, but as for the diagrams involving three- and four- gluon

vertices we decompose them by applying the formulae obtained in the subsection B.

D. The amplitude B
(k)
F i (qb1, qb2, qc1, qc2, k1, k2)

All the terms for the subprocess may be divided into four subsets according to the manner

how the gluons attach to the fermion lines. For the cc set, both gluons attach directly to

the c-quark line; for the cb set, the gluon-1 attaches to the c-quark line while the gluon-2

attaches to the b-quark line; for the bc set, the gluon-1 attaches to the b-quark line while

the gluon-2 attaches to the c-quark line; for the bb set, both gluons attach directly to the

b-quark line in the relevant Feynman diagrams. The diagrams involving three- and four-

gluon vertex (vertices) which are shown in Fig.4 and Fig.5 are decomposed by applying
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the decomposition formulae in subsection B. Hence each of the terms corresponding to

the diagrams in general turns to four terms and then they may be put into four subsets

separately according to the resulting characteristics of the decomposed term. The results

are shown in Table II and Table III. In Table II and Table III, we list the exact results for

the cb and cc sets, and the results for the bc and bb sets by performing interchanges of the

initial gluons and the final quark lines. In Table II and Table III one may see, for example,

how the Feynman diagrams in Figs.4c, 4d and Fig.5b are decomposed, and how each of the

decomposed term is divided into a cb or a cc set. We summarize the relations among the

functions B
(k)
F i (qb1, qb2, qc1, qc2, k1, k2) and show them in Table II and Table III respectively.

In Table II, the functions B
(k)
F i (qb1, qb2, qc1, qc2, k1, k2) are listed either directly or through a

proper decomposition in order to relate them to the cb subset through functions Em,j,k and

suitable coefficients fi,m,j. In Table III, the functions B
(k)
F i (qb1, qb2, qc1, qc2, k1, k2) are listed

either directly or indirectly through a proper decomposition relating to the cc subset via

suitable coefficients fi,m,j . In addition, in Table III, we have decomposed the matrix element

M5d of Fig.5d, as shown in Eq.(8), into three parts according to the three different color

factors: C5d1 = C2ij +C3ij −C1ij −C4ij, C5d2 = C5ij −C1ij +C3ij, C5d3 = C5ij −C2ij +C4ij.

The parameters used in Table II and Table III are as follows: sb = (qb1 + qb2)
2, sc =

(qc1 + qc2)
2, s2 = (k2 − qb1 − qb2)

2, f1 = 2(qc1 − qc2) · k2 + sb, f2 = 2(qc1 − qc2) · k1 + sb,

f3 = 2k1 · k2 − 2qc2 · k1 − 2qc2 · k2, f4 = 2k1 · k2 − 2qc1 · k1 − 2qc1 · k2.

E. The ‘basic functions’ Em,j,k(qb1, qb2, qc1, qc2, k1, k2)

To obtain the nine ‘basic functions’ Em,j,k (m = 1, · · · , 9), let us first define the functions

which correspond to various kinds of quark lines (different γ structures of the fermion lines),

where q2
1 = q2

2 = m2 and q2
0 = k2 = k2

1 = k2
2 = 0:

f0(q1, q2, λ1, λ2) = 〈q0λ1
|(/q1 +m)γδ(/q2 −m)|q0λ2

〉 ,

f1(q1, q2, k, λ1, λ2, λ3) = 〈q0λ1
|(/q1 +m)γδ(/k − /q2 +m)/ǫλ3(k, q0)(/q2 −m)|q0λ2

〉 ,

f2(q1, q2, k, λ1, λ2, λ3) = 〈q0λ1
|(/q1 +m)/ǫλ3(k, q0)(/q1 − /k +m)γδ(/q2 −m)|q0λ2

〉 ,

f3(q1, q2, k, λ1, λ2, λ3) = 〈q0λ1
|(/q1 +m)/ǫλ3(k, q0)(/q2 −m)|q0λ2

〉 ,

f4(q1, q2, k1, k2, λ1, λ2, λ3, λ4) = 〈q0λ1
|(/q1 +m)γδ(/k1 + /k2 − /q2 +m)/ǫλ3(k1, q0) ·

(/k2 − /q2 +m)/ǫλ4(k2, q0)(/q2 −m)|q0λ2
〉 ,
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TABLE III: The expansion coefficients fi,m,j for the functions B
(k)
F i (qb1, qb2, qc1, qc2, k1, k2) which are

grouped into the cc subset directly or indirectly through a proper decomposition (the coefficients

fi,m,j, which are equal to zero in a whole row, are not listed here).

j = 1 j = 2

m 6 7 8 9 5 6 7 8 9 5

f1a,m,j 1 0 0 0 0 0 0 0 0 0

f1b,m,j 0 0 0 0 0 1 0 0 0 0

f1c,m,j 0 1 0 0 0 0 0 0 0 0

f1d,m,j 0 0 0 0 0 0 1 0 0 0

f1e,m,j 0 0 1 0 0 0 0 0 0 0

f1f,m,j 0 0 0 0 0 0 0 1 0 0

f1g,m,j 1 0 0 f3

2 0 -1 0 0 -f3

2 0

f1h,m,j 0 0 1 f4

2 2f4 0 0 -1 f4

2 -2f4

f4a,m,j -1 1 0 2qc2 · k2 0 0 0 0 0 -2qc2 · k2

f4b,m,j 0 0 0 0 4qc1 · k2 0 -1 1 -2qc1 · k2 -2qc1 · k2

f4c,m,j 0 0 0 0 -2qc2 · k1 -1 1 0 2qc2 · k1 0

f4d,m,j 0 -1 1 -2qc1 · k1 -2qc1 · k1 0 0 0 0 4qc1 · k2

f5a,m,j 1 -1 0 2qc2 · k2 -4qc1 · k2 0 -1 1 2qc1 · k2 f1

f5b,m,j 0 -1 1 2qc1 · k1 f2 1 -1 0 2qc2 · k1 -4qc1 · k1

f5c,m,j -1 0 1 -f3−f4

2 2f4 1 0 -1 f3−f4

2 -2f4

f5d1,m,j 0 0 0 0 1 0 0 0 0 −1

f5d2,m,j 0 0 0 1
2 0 0 0 0 1

2 -1

f5d3,m,j 0 0 0 1
2 -1 0 0 0 1

2 0

f5(q1, q2, k1, k2, λ1, λ2, λ3, λ4) = 〈q0λ1
|(/q1 +m)/ǫλ3(k1, q0)(/q1 − /k1 +m)γδ ·

(/k2 − /q2 +m)/ǫλ4(k2, q0)(/q2 −m)|q0λ2
〉 ,

f6(q1, q2, k1, k2, λ1, λ2, λ3, λ4) = 〈q0λ1
|(/q1 +m)/ǫλ3(k1, q0)(/q1 − /k1 +m) ·

/ǫλ4(k2, q0)(/q1 − /k1 − /k2 +m)γδ(/q2 −m)|q0λ2
〉 ,

f7(q1, q2, k1, k2, λ1, λ2, λ3, λ4) = 〈q0λ1
|(/q1 +m)γδ/ǫ

λ3(k1, q0)/ǫ
λ4(k2, q0)(/q2 −m)|q0λ2

〉 ,
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f8(q1, q2, k1, k2, λ1, λ2, λ3, λ4) = 〈q0λ1
|(/q1 +m)/ǫλ3(k1, q0)/ǫ

λ4(k2, q0)γδ(/q2 −m)|q0λ2
〉 ,

f9(q1, q2, k1, k2, λ1, λ2, λ3, λ4) = 〈q0λ1
|(/q1 +m)/ǫλ3(k1, q0)γδ/ǫ

λ4(k2, q0)(/q2 −m)|q0λ2
〉 . (28)

There are several ways to deal with these fermion lines. In Ref. [24], a systematic way for

doing the massive case is proposed. Here we take another and more ‘direct’ approach. When

the massive fermions have time-like momenta qi (i = 1, 2) and /qi are directly connected to

|q0λi
〉 or 〈q0λi

| as in Eq.(28), we may introduce the light-like momenta by defining

q′i = qi −
q2
i

2qi · q0
q0 . (29)

Then /qi for massive fermions can be replaced by the massless ones, /q′i, without any conse-

quences. This is due to the relations

/q0|q0λi
〉 = 0 (30)

or

〈q0λi
|/q0 = 0 . (31)

If the massive fermions with momenta qi (i = 1, 2) are not directly connected to |q0λi
〉 or

〈q0λi
|, but to another light-like spinor, say |q′0λi

〉 or 〈q′0λi
|, then we may do the same thing

if the momentum q0 and the spinor |q0λi
〉 or 〈q0λi

| are replaced by q′0 and |q′0λi
〉 or 〈q′0λi

|,
accordingly. In this way we can turn the massive terms into massless terms, and then they

can be dealt with similarly as in the massless cases[19, 20, 21, 22, 23].

The nine basic functions may be expressed in terms of the above ten functions as

E1,1,k = f1(qc1, qc2, k1, λ3, λ4, λ5) · f2(qb1, qb2, k2, λ1, λ2, λ6) ,

E2,1,k = f2(qc1, qc2, k1, λ3, λ4, λ5) · f2(qb1, qb2, k2, λ1, λ2, λ6) ,

E3,1,k = f1(qc1, qc2, k1, λ3, λ4, λ5) · f1(qb1, qb2, k2, λ1, λ2, λ6) ,

E4,1,k = f2(qc1, qc2, k1, λ3, λ4, λ5) · f1(qb1, qb2, k2, λ1, λ2, λ6) ,

E5,1,k = f3(qb1, qb2, k2, λ1, λ2, λ5) · f3(qc1, qc2, k1, λ3, λ4, λ6) ,

E6,1,k = f0(qb1, qb2, λ1, λ2) · f4(qc1, qc2, k1, k2, λ3, λ4, λ5, λ6) ,

E7,1,k = f0(qb1, qb2, λ1, λ2) · f5(qc1, qc2, k1, k2, λ3, λ4, λ5, λ6) ,

E8,1,k = f0(qb1, qb2, λ1, λ2) · f6(qc1, qc2, k1, k2, λ3, λ4, λ5, λ6) ,

E9,1,k = f0(qb1, qb2, λ1, λ2) · f7(qc1, qc2, k1, k2, λ3, λ4, λ5, λ6) . (32)
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Applying the exchange symmetries between the two gluons and among the quarks, the

following relations may be obtained:

E1,3,k = E4,2,k, E2,3,k = E2,2,k, E3,3,k = E3,2,k ,

E4,3,k = E1,2,k, E5,3,k = E5,2,k, E1,4,k = E4,1,k ,

E2,4,k = E2,1,k, E3,4,k = E3,1,k, E4,4,k = E1,1,k ,

E5,4,k = E5,1,k, E9,4,k = E9,1,k + E9,2,k − E9,3,k . (33)

Furthermore, for the diagrams involving three gluon vertices, by using a proper decomposi-

tion and the results in Tables.II and III, E6,j,k may be replaced as

E6,1,k = E7,1,k + 2qc2 · k2E9,1,k − E3,2,k + E1,2,k ,

E6,2,k = E7,2,k + 2qc2 · k1E9,2,k − E3,1,k + E1,1,k ,

E6,3,k = E7,3,k + 2qb2 · k2E9,3,k −E3,4,k + E1,4,k ,

E6,4,k = E7,4,k + 2qc2 · k1E9,4,k − E3,3,k + E1,3,k ; (34)

and E7,j,k may be replaced as

E7,1,k = −E4,1,k + E2,1,k + E8,1,k − 2qc1 · k1(2E5,1,k − 2E5,2,k + E9,1,k) ,

E7,2,k = −E4,2,k + E2,2,k + E8,2,k − 2qc1 · k2(2E5,2,k − 2E5,1,k + E9,2,k) ,

E7,3,k = −E4,3,k + E2,3,k + E8,3,k − 2qb1 · k1(2E5,3,k − 2E5,4,k + E9,3,k) ,

E7,4,k = −E4,4,k + E2,4,k + E8,4,k − 2qb1 · k2(2E5,4,k − 2E5,3,k + E9,4,k) . (35)

Thus the seven kinds of basic functions Em,j,k (m = 1, · · · , 5, 8, 9, j = 1, · · · , 4, k =

1, · · · 64) may be written in a very compact form. As an explicit example, Em,1,1 (m =

1, · · · , 5, 8, 9) is shown in one of the appendices.

F. Rearrangement of the color factor for the amplitude

As shown in section II, there are only five independent color factors, and we may choose

them as Cmij (m = 1, · · · , 5), where i, j (1, 2, 3) are the indices of the final b and c̄ quarks’

colors respectively. Thus the whole amplitude may be rewritten as

M (λ1,λ4,λ5,λ6)(qb1, qb2, qc1, qc2, k1, k2) =
36
∑

i=1

M
(λ1,λ4,λ5,λ6)
i (qb1, qb2, qc1, qc2, k1, k2)

=
5
∑

m=1

CmijM
′(λ1 ,λ4,λ5,λ6)
m (qb1, qb2, qc1, qc2, k1, k2) ,(36)
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where Cmij (m = 1, · · · , 5) are the five independent color factors, defined in subsection A.

With Eq.(22), M ′(λ1 ,λ4,λ5,λ6)
m (qb1, qb2, qc1, qc2, k1, k2) (in short notation M ′

m) can be further

factorized as

M ′
m =

∑

λ2,λ3

CmijM
′(λ1,λ2,λ3,λ4,λ5,λ6)
Fm (qb1, qb2, qc1, qc2, k1, k2)D2B

(λ2,λ3)
Bc(B∗

c )(qb2, qc1) , (37)

where M
′(λ1,λ2,λ3,λ4,λ5,λ6)
Fm (qb1, qb2, qc1, qc2, k1, k2) (in short notation M ′

Fm) is the amplitude of

the 2 → 4 free quark process gg → c+ c̄+ b+ b̄.

Owing to the fact that each of the terms in the amplitude M ′
m (M ′

Fm) is related to one

of the 36 Feynman diagrams, the explicit formulae for M ′
m(M ′

Fm) (m = 1, · · · , 5) may be

written down directly. With the nine kinds of basic functions Ei,m,k Eqs.(32-35), M ′
Fm may

be written as

M ′
F1 =

D1

2

(

2(X3a +X4c +X5b)E1,1,k − 2X4eE2,4,k − 2X4cE3,1,k + 2X4eE4,4,k

−X5d(2E5,1,k − 4E5,2,k + E9,1,k + E9,2,k) + 2{−(X1g +X5c)E6,1,k

+(X1b +X1g +X5c)E6,2,k +X5c(E8,1,k − E8,2,k) −X2hE8,3,k +

(X2f +X2h)E8,4,k + 2X4eE5,4,kqb1 · k2} + 4X4cE5,1,kqc2 · k1 − (X1g +

X5c)(E9,1,k − E9,2,k)f3 +X5c(4E5,1,k − 4E5,2,k + E9,1,k −

E9,2,k)f4 +X2h(−4E5,3,k + 4E5,4,k −E9,3,k + E9,4,k)f6 −

2X5b{E2,1,k + E3,1,k − E4,1,k −E5,1,k(sc − s1 + sb)}
)

, (38)

M ′
F2 =

D1

2

(

2(X3e +X4a +X5a)E1,2,k − 2X4gE2,3,k − 2X4aE3,2,k +

2(X1a +X1g +X5c)E6,1,k − (X1g +X5c)E6,2,k +X5c(E8,2,k − E8,1,k) +

(X2e +X2h)E8,3,k −X2hE8,4,k) −X5d(2E5,2,k + E9,1,k + E9,2,k) +

2X4g(E4,3,k + 2E5,3,kqb1 · k1) + 4X4aE5,2,kqc2 · k2 + (X1g +X5c)(E9,1,k −

E9,2,k)f3 +X5c(4E5,2,k − E9,1,k + E9,2,k)f4 + 4E5,1,k · (X5d −X5cf4) +

X2h(4E5,3,k − 4E5,4,k + E9,3,k − E9,4,k)f6 − 2X5a{E2,2,k + E3,2,k −

E4,2,k − E5,2,k(−s2 + sb + sc)}
)

, (39)

M ′
F3 =

D1

2

(

−2(X4c +X5b)E1,1,k + 2X4eE2,4,k + 2(X3c +X4c)E3,1,k +

2X3dE4,1,k + 2(X5cE6,1,k −X5cE6,2,k +X2aE6,4,k +X2g(−E6,3,k +

E6,4,k) +X1dE7,2,k +X2dE7,4,k − (X1h +X5c)E8,1,k +

(X1f +X1h +X5c)E8,2,k) +X5d(2E5,1,k − 4E5,2,k + E9,1,k +
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E9,2,k) − 2X4e(E4,4,k + 2E5,4,kqb1 · k2) − 4X4cE5,1,kqc2 · k1

+X5c(E9,1,k − E9,2,k)f3 − (X1h +X5c)(4E5,1,k − 4E5,2,k +

E9,1,k − E9,2,k)f4 −X2g(E9,3,k − E9,4,k)f5 + 2{(X3b +X5b)E2,1,k +

X5b[E3,1,k − E4,1,k −E5,1,k(−s1 + sb + sc)]}
)

, (40)

M ′
F4 =

D1

2

(

−2(X4a +X5a)E1,2,k + 2(X3g +X4a)E3,2,k + 2X3hE4,2,k −

2X5cE6,1,k + 2(X5cE6,2,k + (X2a +X2g)E6,3,k −X2gE6,4,k +

X1cE7,1,k +X2cE7,3,k + (X1e +X1h +X5c)E8,1,k − (X1h +X5c)E8,2,k) +

X5d(2E5,2,k + E9,1,k + E9,2,k) + 2X4g(E2,3,k − E4,3,k −

2E5,3,kqb1 · k1) − 4X4aE5,2,kqc2 · k2 −X5c(E9,1,kE9,2,k)f3 −

−(X1h +X5c)(4E5,2,k −E9,1,k + E9,2,k)f4 + 4E5,1,k(−X5d +

(X1h +X5c)f4) +X2g(E9,3,k − E9,4,k)f5 + 2{(X3f +X5a)E2,2,k +

X5a[E3,2,k − E4,2,k −E5,2,k(−s2 + sb + sc)]}
)

, (41)

M ′
F5 = D1

(

−(X5bE1,1,k) + (X4d +X5b)E2,1,k − (X3d +X4d)E4,1,k −X3hE4,2,k −

X2a(E6,3,k + E6,4,k) −X1eE8,1,k −X1fE8,2,k −X5d(E5,1,k + E5,2,k

−E9,1,k − E9,2,k) +X4h(−E1,3,k + E3,3,k − 2E5,3,kqb2 · k1) +

X4f(−E1,4,k + E3,4,k − 2E5,4,kqb2 · k2) − 2X4dE5,1,kqc1 · k1 +

X4b(E2,2,k − E4,2,k − 2E5,2,kqc1 · k2) −X5b(−E3,1,k + E4,1,k +

E5,1,k(−s1 + sb + sc)) −X5a{E1,2,k −E2,2,k − E3,2,k +

E4,2,k + E5,2,k(−s2 + sb + sc)}
)

, (42)

where Xi are the scalar factors of the propagators, labelled by the corresponding Feynman

diagram, s1 = (k1−qb1−qb2)2, f5 = 2k1·k2−2qb2·k1−2qb2·k2 and f6 = 2k1·k2−2qb1·k1−2qb1·k2.

G. Programme check for the subprocess gg → Bc(B
∗
c )+b+c̄ and hadronic production

of Bc

With all the above preparations, it is straightforward to write the programme for comput-

ing the cross section of the subprocess. Applying the pQCD factorization theorem, various

cross sections of the Bc(B
∗
c )-hadronic production may be obtained by integrating the hadron

structure functions over the cross section of the subprocess gg → Bc(B
∗
c ) + b+ c̄.
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Various cross-sections of the subprocess gg → Bc(B
∗
c ) + b + c̄ may be calculated, once

the amplitude (with initial state color factors averaged and final state color factors summed

up) has been computed. One only has to integrate over the proper phase space according

to the requirements. Since the final state of the process is a massive three-body state,

the phase space integrations are carried out numerically. As in the more general case,

a Monte-Carlo simulation integration over the phase space is a practical solution, when

one is averaging over the helicities of the initial gluons and spins of the quarks (and spins

of B∗
c if gg → B∗

c + b + c̄ is considered). To do the phase space integration, we first

use the routine RAMBOS [26] to generate the requested phase space points (the energy-

momentum conservation is guaranteed and some additional constraints for specific requests

are matched). We then use the VEGAS [27] program (with necessary revisions to suit the

present problem) to perform the integrations. The VEGAS program is useful for obtaining

accurate total cross-sections, smooth distributions for the pT[32] and the rapidity Y of the

Bc-meson, and so on. When running VEGAS, the most important samples for the matrix

element squared are taken first. Then by taking an adequate number of points for the

integration, we obtain a final result, which is stable with respect to increasing the number

of points and compatible with the requested statistical error.

To check the program, we calculate the total cross-section of the subprocess, gg →
Bc(B

(∗)
c ) + b+ c̄, as well as the Bc pT and Y distributions for various subprocess center-of-

mass energies, using the same parameters (e.g. αs, mb, mc, mBc
and fBc(B∗

c )) as in Refs.[7, 8].

The results are compared with those in Refs.[7, 8] and shown in Table IV and Table V. The

Bc-pT and Bc-Y distributions for various subprocess center-of-mass energies are compared

with Ref.[7] and shown in Fig.9. The integrated cross sections versus the center-of-mass

energy of the subprocess for a fixed value of αs = 0.2 are also shown in Fig.10. One may see

the agreement between our results and those in Ref.[7, 8] from the tables and figures. Since

the present programme and that used in Ref.[7, 8] are totally different, the agreement is a

very solid check for both of them.

According to pQCD, the production cross section is formulated

dσ =
∑

ij

∫

dx1

∫

dx2F
i
H1

(x1, µF ) × F j
H2

(x2, µF )dσ̂ij→BcX(x1, x2, µF ), (43)

where F i(x, µF ) is this distribution function of the parton i in the hadron H ,

dσ̂ij→BcX(x1, x2, µF ) is the cross section for the relevant inclusive production (i+j → Bc+X).
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TABLE IV: Comparison of total cross sections for gg → Bc(B
∗
c ) + b + c̄ with the corresponding

results of Ref.[7]. The input parameters are mb = 4.9 GeV, mc = 1.5 GeV, MB∗c = mb + mc,

fBc = 0.480 GeV, αs = 0.2. The number in parenthesis shows the Monte Carlo uncertainty in the

last digit. The cross sections are expressed in nb.

√
s̄ 20 GeV 30 GeV 60 GeV

σBc
0.6579(5) × 10−2 0.9465(8) × 10−2 0.7872(8) × 10−2

σBc
[7] 0.661(7) × 10−2 0.949(8) × 10−2 0.782(9) × 10−2

σB∗
c

0.1606(1) × 10−1 0.2460(3) × 10−1 0.2033(2) × 10−1

σB∗
c
[7] 0.160(2) × 10−1 0.244(3) × 10−1 0.203(3) × 10−1

TABLE V: Comparison of total cross sections for gg → Bc + b+ c̄ with the corresponding results

of Ref[8]. The input parameters are mb = 3mc, MBc
= 6.30GeV , fBc = 0.480GeV , αs = 0.2. The

number in parenthesis shows the Monte Carlo uncertainty in the last digit. The cross sections are

expressed in nb.

√
s̄ 20 GeV 30 GeV 60 GeV 80 GeV

σBc
0.6853(5) × 10−2 0.9731(8) × 10−2 0.7997(9) × 10−2 0.6244(9) × 10−2

σBc
[8] 0.686(2) × 10−2 0.971(4) × 10−2 0.793(5) × 10−2 0.623(5) × 10−2

With the pQCD factorization formula Eq.(43), various cross sections for the hadronic pro-

duction of the meson Bc(B
∗
c ) can be computed by integrating over two more dimensions of

the structure functions of the incoming hadrons.

The programme for the hadronic production of the Bc(B
∗
c ) mesons has also been checked

by evaluating the hadronic production of Bc at Tevatron. The explicit example is to produce

the Bc meson by using the next to leading order running αs, the characteristic energy scale

Q2 = s̄/4 (NQ2=1) of the production and the CTEQ3M set of parton distribution functions.

The results for the distributions and the cross sections agree with those in Ref.[8].
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III. THE PROGRAMME: BCVEGPY GENERATOR

The programme BCVEGPY is a generator for hadronic production of Bc mesons in form

of a Fortran package, based on the dominant subprocess gg → Bc(B
∗
c )+b+ c̄. Concerning its

implementation in PYTHIA, BCVEGPY is written in the same format as in PYTHIA (in-

cluding common block variables). Thus it is easy to implement straightforward in PYTHIA

as an external process, and in this way all the functions of PYTHIA can be utilized in

connection with the use of BCVEGPY.

A. Structure of the program

The BCVEGPY Fortran package contains five files: bcvegpy.for, genevnt.for, sqamp.for,

foursets.for and pythia6208.for. The routine bcvegpy.for is the main program of BCVEGPY

which takes care of the necessary input parameters for the event generation and outputs a

variety of results, such as the distribution of the transverse momentum pT and rapidity Y of

the produced Bc, etc.. In the routine genevnt.for, there is a function TOTFUN and five sub-

routines: EVNTINIT, UPINIT, UPEVNT, BCPYTHIA and PHPOINT. The subroutines

EVNTINIT and UPINIT are used for initializing the parameters when running BCVEGPY

in the PYTHIA environment. The event generation starts by calling PYEVNT (a PYTHIA

routine) just after calling the subroutines EVNTINIT and UPINIT. The routine UPEVNT

(a PYTHIA user routine) is then called, that allows the implementation of an external pro-

cesses. The functioning of the subroutine UPEVNT is determined by an input flag, which

is a number read in from the file input.dat. When the input flag switches on, the generation

of complete events may be carried out. UPEVNT calls the subroutine BCPYTHIA and the

full information, i.e. the status code, the mother code, the color flow etc. for the final state

particles (Bc(B
∗
c ) meson and two jets b and c̄). The allowed phase-space for the production

(i.e. energy-momentum consevation) controls the production completely. The phase-space is

generated by calling the subroutine PHPOINT. The function TOTFUN computes the value

of the integrand for the phase space integration by calling the subroutine AMP2UP which

is in sqamp.for. The subroutine AMP2UP is written according to the techniques described

in the previous sections and its purpose is to compute the square of the amplitude for the

hard subprocess gg → Bc(B
∗
c ) + b+ c̄. In files sqamp.for and foursets.for, there are quite a
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lot subroutines and functions, that are needed for calculating the square of the amplitude.

All of them will be explained in Appendix C. When running the package BCVEGPY, the

PYTHIA library must be linked; in particular, the generator is designed to be interfaced to

the PYTHIA version 6.2[25]. For reference, we include the file pythia6208.for in our pack-

age. In order to increase the phase space integration accuracy, one may apply the subroutine

VEGAS (in sqamp.for) to optimize the sampling of the phase space points for phase space

integration before calling PYTHIA.

B. Use of the generator

BCVEGPY can be used for generating a huge sample of Bc(B
∗
c ) meson for hadronic

collisions efficiently (based on the mechanism with gg → Bc(B
∗
c ) + b + c̄ as the main sub-

process). Furthermore, if the generator is implemented in PYTHIA, a complete event with

two hadronized quark jets and a decayed Bc(B
∗
c ) meson can be simulated. If one would

like to simulate only the hadronic production of the Bc(B
∗
c ) meson, BCVEGPY alone is

sufficient. Furthermore, users may choose either the hadronic production or the subprocess

gg → Bc(B
∗
c ) + b + c̄ only, just by setting the value of the flag ISUBONLY equal to 0 to

switch on the integration for the parton distribution (structure) functions, or setting the

flag equal to 1 for the subprocess only. Since the cross section of Bc production in hadron

collisions is small compared to the B+, B0, Bs production, the efficiency for producing Bc

events through fragmentation of a b̄ quark, as done in the standard PYTHIA, is too low

(the ratio of the signal to the background is too small). For experimental feasibility studies

of Bc mesons, a very large sample of Bc events is needed. Therefore BCVEGPY, which is

powerful for generating Bc events only with full information in hadron-hadron collision, is

very useful.

Users may communicate with or give instructions to the program through an input file

(input.dat). The output files include 1s0.dat (the Bc total cross-section) or 3s1.dat (the

B∗
c total cross-section); pt.dat (the Bc-pT distribution); shat.dat (the Bc-

√
s̄ distribution);

rap.dat (the Bc-Y rapidity distribution); pseta.dat (the Bc-η pseudorapidity distribution)

and grade.dat (the sampling importance function obtained by VEGAS). The input.dat file

allows users to setup the generation parameters and requests, while the output files collect

the relevant event information.
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TABLE VI: The parameter values in the sequential order in the input.dat file.

PMBC PMB PMC FBC

PTCUT ETACUT ECM IBCSTATE IGENERATE IVEGASOPEN

NUMBER NITMX

NQ2 NPDFU NEV

ISHOWER MSTP(51)

IDWTUP MSTU(111) PARU(111)

ISUBONLY SUBENERGY IGRADE

The sequential order and the format of the parameters in the file input.dat should be the

same as in the Table VI. The parameters specified in the input file are:

• PMBC, PMB, PMC=: masses of the Bc meson, b quark and c quark respectively (in units

GeV);

• FBC=: decay constant for the Bc meson (in units GeV);

• PTCUT=: pT cut for the Bc(B
∗
c ) meson (in units GeV, value can be freely selected by

users);

• ETACUT=: Y cut for the Bc(B
∗
c ) meson (value can be freely selected by the users);

• ECM=: total energy for the hadron collision (in units GeV);

• IBCSTATE=: state of the Bc(B
∗
c ) meson: IBCSTATE=1 for Bc[1

1S0] and IBCSTATE=2

for B∗
c [1

3S1];

• IGENERATE=: whether to generate complete events. IGENERATE=0, when users wish

the simulation to stop after the generation of the ‘final state’ containing the Bc meson, b-jet

and c̄-jet of the subprocess gg → Bc+b+ c̄; IGENERATE=1, when users wish that complete

events including the Bc production are to be generated. In the latter case, IDWTUP=1;

• IVEGASOPEN=: whether switch on/off the VEGAS subroutine: IVEGASOPEN=1 for

using VEGAS; IVEGASOPEN=0 for not using VEGAS;

• NUMBER=: total number of times for calling the integrand (VEGAS parameter, see

VEGAS manual). The parameter is needed only when IVEGASOPEN=1 in each iteration;

• NITMX=: upper limit for the number of iterations (VEGAS parameter, see VEGAS

manual). The parameter is needed only when IVEGASOPEN=1;

• NQ2=: choice of Q2, the type of the characteristic energy scale squared in the production
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(in units GeV2). Here seven choices are available: i). NQ2=1: Q2 = s̄/4 (s̄ is the squared

center-of-mass energy of the subprocess); ii). NQ2=2: Q2 = s̄; iii). NQ2=3: Q2 = p2
TBc

+

m2
Bc

; iv). NQ2=4: Q2 = (
√

p2
TBc

+m2
Bc

+
√

p2
Tb +m2

b +
√

p2
Tc +m2

c)
2; v). NQ2=5: Q2 =

(
√

p2
TBc

+m2
Bc

+
√

p2
Tb +m2

b +
√

p2
Tc +m2

c)
2/9; vi). NQ2=6: Q2 = p2

Tb + m2
b for the αs in

parton distribution functions and in the coupling to the b-quark line, and Q2 = 4m2
c for the

αs in the coupling to the c̄-quark line; vii). NQ2=7: Q2 = p2
Tb +m2

b ;

• NPDFU=: choice of the collision type of hadrons. The assignments can be found in

PYTHIA manual, e.g. NPDFU=1 for p− p̄ and NPDFU=2 for p− p;

• NEV=: number of the events for the hadronic production h + h → Bc + · · · (h means a

hadron) to be generated;

• ISHOWER=: whether to switch on/off the showers, including initial and final states,

multiple interactions, hadronization; e.g. ISHOWER=1 for ‘on’ and ISHOWER=0 for ‘off’

(see PYTHIA manual);

• MSTP(51)=: choice of the proton parton-distribution set; e.g.MSTP(51)=2 for CTEQ3M;

MSTP(51)=7 for CTEQ5L; MSTP(51)=8 for CTEQ5M etc. (PYTHIA parameter, see

PYTHIA manual);

• IDWTUP=: master switch dictating how the event weights and the cross-sections should

be interpreted (PYTHIA parameter, see PYTHIA manual); e.g. when IDWTUP=1, parton-

level events have a weight at the input to PYTHIA. Events are then either accepted

or rejected, so that fully generated events at the output have a common weight; when

IDWTUP=3, parton-level events have a unit weight at the input to PYTHIA i.e. they are

always accepted;

• MSTU(111)=: order of αs in the evaluation in PYALPS (a PYTHIA routine for calculating

αs, see PYTHIA manual); e.g. MSTU(111)=1 for leading order (LO); MSTU(111)=2 for

next leading order (NLO);

• PARU(111)=: constant value of αs (see PYTHIA manual), which is used only when

MSTU(111)=0;

• ISUBONLY=: whether to keep the information only of the sub-process gg → Bc(B
∗
c )+b+c̄;

ISUBONLY=0 for the full hadronic production, i.e. the structure functions are connected;

ISUBONLY=1 for the subprocess only.

• SUBENERGY=: the energy (in units GeV) of the sub-process gg → Bc(B
∗
c ) + b+ c̄. It is

needed only when ISUBONLY=1;
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• IGRADE=: whether to use the grade generated by previous running VEGAS when

IVEGASOPEN=0; IGRADE=1 means to use; IGRADE=0 means not to use.

In the package, two subroutines PHASE-GEN and VEGAS are needed when integrating

over the phase space:

The subroutine PHASE-GEN(YY,ET,WT)

The subroutine is included in the file sqamp.for and is called by another subroutine

PHPOINT in genevnt.for. The purpose is to evaluate the allowed phase-space points for the

sub-process gg → Bc(B
∗
c )+ b+ c̄ when the center-of-mass energy of the sub-process is fixed,

and to return a non-zero weight for each allowed phase space point. The energy-momentum

conservation is integrated out in order to reduce the dimension of the phase space integration

by four. Since the subprocess is a three body final state, the nine-dimensional phase space

integration of the process turns into a five-dimensional one with a proper Jacobi determinant,

when PHASE-GEN has been applied.

The variables in the routine are:

• YY(5)=: a five-dimensional random number with a range from 0 to 1 for each dimension,

corresponding to the five independent integration variables for the phase-space;

• ET=: center-of-mass energy for the subprocess (in units GeV); ET can be chosen freely

when ISUBONLY=1, otherwise when ISUBONLY=0, ET is determined by PHPOINT;

• WT=: the returned weight for each generated phase-space point.

The subroutine VEGAS(FXN,NDIM,NCALL,ITMX,NPRN)

• FXN=: the integrand calling the function TOTFUN in genevnt.for;

• NDIM=: number of integration dimensions for the generator; NDIM=5 when

ISUBONLY=1; NDIM=7 when ISUBONLY=0;

• NCALL=: maximum total number of the times to call the integrand in each iteration

set by the user;

• ITMX=: maximum number of allowed iterations set by the user;

• NPRN=: print out level; (see VEGAS manual) e.g. NPRN=2, when printing out only

the cross section values and errors.

Note that the units of all the output data is well explained in the programme.
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TABLE VII: Generation parameters used in the sample generation.

.............. INITIAL PARAMETERS ................

Bc IN 11S0

GENERATE EVNTS 30000000 FOR TEVATRON ENERGY(GEV) 0.20E + 04

M {Bc}=6.400 M {B}= 4.900 M {C}=1.500 f {Bc}=0.4800

Q2 TYPE= 1 ALPHAS ORDER= 2

PARTON DISTRIBUTION FUNCTION: CTEQ 3M

USING PYTHIA MODEL FOR IDWTUP= 3

PTCUT =0.000 GeV

NO RAPIDITY CUT

USING VEGAS: NUMBER IN EACH ITERATION= 300000 ITERATION= 27

.............. END OF INITIALIZATION ..............

C. Generator checks

The whole Fortran package is checked by examining the gauge invariance of the amplitude.

The matrix element vanishes when the polarization vector of an initial gluon is substituted

by the momentum vector of this gluon.

For further checking, we have performed several test runs. By setting the parameter

ISUBONLY=1 in the input.dat file, we obtain the transverse momentum pT and rapidity

Y distributions for the produced Bc, and the total cross-section for the sub-process gg →
Bc(B

∗
c ) + b + c̄. The results, which are shown in the previous section, coincide well with

several groups’ results[8].

When running the programme, the initialization is shown as a screen snap-shot in Ta-

ble VII. Some output data are shown by Figs.11,12.

IV. CONCLUSIONS

A Bc meson generator BCVEGPY for hadronic collisions, based on the dominant sub-

process gg → Bc(B
∗
c ) + b + c̄, has been developed and well-tested. The generator has

been interfaced with PYTHIA, which takes care of producing the full event and filling the
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standard PYTHIA event common block. In view of the prospects for Bc physics at Tevatron

and at LHC, the generator offers a valuable platform for further experimental studies.
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APPENDIX A: THE HELICITY FUNCTIONS FOR THE AMPLITUDE

In this Appendix, we show an example how to calculate the functions Em,j,k.

For evaluating the inner product 〈p · q〉, we introduce the notations k±, k⊥ for a light-like
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momentum kµ and use the Weyl representation for γ- matrices:

γ0 =







0 1

1 0





 , γi =







0 −σi

σi 0





 , (i = 1, 2, 3) (A1)

with Pauli matrices

σ1 =







0 1

1 0





 , σ2 =







0 −i
i 0





 , σ3 =







1 0

0 −1





 , (A2)

and

k± = k0 ± kz, k⊥ = kx + iky = |k⊥|eiϕk =
√

k+k−e
iϕk , (A3)

where 1 is the 2 × 2 unit matrix and σi (i=1,2,3) are the Pauli matrices. Note that here

we always have k+ ≥ 0, k− ≥ 0, because k+k− ≡ k2
0 − k2

z = k2
x + k2

y ≥ 0 due to k2 =

k2
0 − k2

z − k2
x − k2

y = 0. By suitable choice of the phase we introduce the Weyl spinors

|k+〉 =





















√
k+

√
k−e

iϕk

0

0





















, |k−〉 =





















0

0
√
k−e

−iϕk

−√
k+





















, (A4)

and

〈k1 · k2〉 = 〈k1−|k2+〉 =
√

k1−k2+e
iϕ1 −

√

k1+k2−e
iϕ2

= k1⊥

√

k2+

k1+
− k2⊥

√

k1+

k2+
, (A5)

which appear to be explicitly antisymmetric. For the spinor product 〈k1+|/k3|k2+〉, where

k2
i = 0 (i = 1, 2, 3),

〈k1+|/k3|k2+〉 = 〈k1+|k3−〉〈k3−|k2+〉

=
1√

k1+k2+
(k1+k2+k3− − k1+k2⊥k

∗
3⊥ − k∗1⊥k2+k3⊥ + k∗1⊥k2⊥k3+) , (A6)

and for the spinor product involving the polarization vector ǫ(sz) of B∗
c ,

〈q0+|/ǫ(sz) /P |q0−〉 = P ′
+ǫ(sz)−q

∗
0⊥ − (P ′

⊥)∗q0+ǫ(sz)− − P ′
+ǫ(sz)⊥

q2
0⊥
q0+

+ ǫ(sz)⊥(P ′
⊥)∗q∗0⊥ −

P ′
⊥ǫ(sz)

∗
⊥q

∗
0⊥ + q0+ǫ

∗
⊥P

′
− + ǫ(sz)+P

′
⊥
q2
0⊥
q0+

− ǫ(sz)+P
′
−q

∗
0⊥ , (A7)

where P ′ = P − P 2

2P ·q0
q0.
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Since the spinor products and the double inner spinor products are used frequently in

the program, we take yi (i = 1, · · · , 42) to denote all the possible spinor products appearing

in the computation, e.g. y1 = 〈k1+|/q′c2|q0+〉 and x1, x2 to denote the double inner spinor

products:

x1 = 〈q0 · k1〉〈q0 · k2〉, x2 = 〈q0 · k1〉∗〈q0 · k2〉∗ . (A8)

To simplify the results, we have introduced the light-like momenta q′b1, q
′
b2, q

′
c1 and q′c2 in

terms of time-like momenta qb1, qb2, qc1 and qc2 respectively:

q′b1 = qb1 −
q2
b1

2qb1 · q0
q0 , q′b2 = qb2 −

q2
b2

2qb2 · q0
q0 ,

q′c1 = qc1 −
q2
c1

2qc1 · q0
q0 , q′c2 = qc2 −

q2
c2

2qc2 · q0
q0 . (A9)

When the functions Em,1,k (m = 1, · · · , 5, 8, 9; k = 1, · · · , 64) are given, Em,j,k (j =

2, · · · , 4) can be obtained by interchanging the initial gluon momenta and the final quark

flavors. As shown below, due to the properties of the helicities, the functions may be simpli-

fied, and may even become zero for some helicities. Here we list Em,1,1 (m = 1, · · · , 5, 8, 9)

for an explicit example,

E1,1,1 =
4y1

x1

(

mb
2((y11 − y12)y19y27 + y10(y34y

c
34 − y5y

c
5))

+ y10(y20(y2y
c
5 − yc

24y
c
34) +mc

2y35y
c
35)
)

,

E2,1,1 =
−4

x1

(

mb
2y9(y11y19y27 + y10y34y

c
34)

+ y10{−(y9y20y
c
24y

c
34) +mc

2(y2y29y31 + y9y35y
c
35)}

)

,

E3,1,1 =
4y1y16

x1

(

(mc
2y17 − y11y32)y

c
17 +mb

2(y5y
c
5 − y34y

c
34)

+ y20{(y7 − y2)y
c
5 + yc

24y
c
34} −mc

2y35y
c
35

)

,

E4,1,1 =
4y16

x1
(y9

(

y11y32y
c
17 + (mb

2y34 − y20y
c
24)y

c
34)

+ mc
2{(y2 − y7)y29y31 + y9(y35y

c
35 − y17y

c
17)}

)

,

E5,1,1 =
2y1y16y27y29

x1

,

E8,1,1 =
4

x1

(

y9(y12 − y18)(mb
2y34 − y20y

c
24)y

c
34 + 2qc1 · k1〈q0 · q′b1〉〈k2 · k1〉∗y27y36y

c
35 +

mc
2{(y2(y12 − y18) − y7y16)y29y31 + y9((y12 − y18)y35y

c
35 − y16y19y29)}

)

(A10)

E9,1,1 = 0 , (A11)

where the index c means charge conjugation of the spinor, |p−〉 = |p+〉c.
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APPENDIX B: POLARIZATION VECTOR FOR B∗
c [13S1] MESON

The expressions of the polarization vectors depend on the gauge choice. Here we choose

a cartesian basis for the polarization vectors:

ǫz(P ) =
1

√

P 2
0 − P 2

z

(Pz , 0 , 0 , P0) , (B1)

ǫx(P ) =
|Pz|
PzM

(

PxP0
√

P 2
0 − P 2

y − P 2
z

,
√

P 2
0 − P 2

y − P 2
z ,

PxPy
√

P 2
0 − P 2

y − P 2
z

,

PxPz
√

P 2
0 − P 2

y − P 2
z

)

, (B2)

ǫy(P ) =







PyP0
√

P 2
0 − P 2

z

√

P 2
0 − P 2

y − P 2
z

, 0,

√

P 2
0 − P 2

z
√

P 2
0 − P 2

y − P 2
z

,
PyPz

√

P 2
0 − P 2

z

√

P 2
0 − P 2

y − P 2
z





 ,(B3)

which satisfy the conditions

ǫi · P = 0 , ǫi · ǫj = −δij , (i, j = x, y, z) . (B4)

APPENDIX C: ROUTINES AND FUNCTIONS FOR THE HELICITY AMPLI-

TUDE

In this Appendix, subroutines and functions for calculating the helicity amplitudes for

the sub-process gg → Bc(B
∗
c ) + b+ c̄ are explained.

SUBROUTINE BUNDHELICITY

Purpose: to compute the helicity amplitude of the bound state part, b̄+ c→ Bc(B
∗
c ), where

Bc is the lowest state of 11S0 and B∗
c is the lowest one of 13S1, with the expressions for the

polarization as presented in appendix B.

Integer IBCSTATE=: state of the double heavy meson, IBCSTATE=1 for Bc[1
1S0];

IBCSTATE=2 for B∗
c [1

3S1].

Real*8 BUNDAMP(4)=: four helicity amplitudes of the bound state part c + b̄ → Bc(B
∗
c );

BUNDAMP(4)=0 for c+ b̄→ Bc; BUNDAMP(4)=1 for c+ b̄→ Bc.

Real*8 POLAR(4,3)=: four Lorentz components of the three polarization vectors ǫk , (k =

x, y, z) for the B∗
c state.

SUBROUTINE FREEHELICITY
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Purpose: to compute the helicity amplitude of the process gg → b̄+ c+ b+ c̄. The functions

M ′
Fm (m = 1, · · · , 5), Em,j,k (m = 1, · · · , 9; j = 1, · · · , 4; k = 1, · · · , 64) are defined in the

body of the paper.

Real*8 PMOMUP(5,8)=: the momenta PMOMUP(5,j) (j = 1, · · · , 8) in the process:

PMOMUP(5,1) for the gluon-1, PMOMUP(5,2) for the gluon-2, PMOMUP(5,3) for the

Bc(B
∗
c ), PMOMUP(5,4) for the b, PMOMUP(5,5) for the c̄, PMOMUP(5,6) for the b̄,

PMOMUP(5,7) for the c, PMOMUP(5,8) for the q0 (the light-like reference momentum).

Real*8 PMOMZERO(5,8)=: eight light-like momenta obtained from PMOMUP(5,8) ac-

cording to Eq.(29) respectively.

Real*8 COLMAT(5,64)=: M
′(λ1,λ2,λ3,λ4,λ5,λ6)
Fm (λi = ±, m = 1, · · · , 5).

Integer IDP, IDQ0, IDB1, IDB2, IDC1, IDC2, IDK1, IDK2=: symbols (codes) for the parti-

cles in the processes: IDP for Bc(B
∗
c ), IDQ0 for the reference massless fermion, IDB1 for

b-quark, IDB2 for b̄-quark, IDC1 for c-quark, IDC2 for c̄-quark, IDK1 for gluon-1, IDK2 for

gluon-2.

Complex*16 YUP(42)=: 42 possible non-zero spinor products (yi, i = 1, 2, · · · , 42).

Complex*16 XUP(2)=: two possible double-spinor inner products (x1, x2).

Real*8 PROPUP(14,4)=: 14 possible denominators from the propagators appearing in the

four basic groups of the Feynman diagrams (cb, bc, cc, bb).

Complex*16 BFUN(9,4,64)=: Em,j,k (m = 1, 2, · · · , 9; j = 1, · · · , 4; k = 1, 2, · · · , 64).

SUBROUTINE AMP2UP

Purpose: to compute the square of the helicity amplitude of the process gg → Bc(B
∗
c )+b+ c̄

by connecting the amplitude of the bound state part to that of the free quark part. The

helicities of the intermediate quarks c, b̄ are summed up, the whole amplitude is squared,

and then all the 16 possible squared helicity amplitudes (if particle polarizations in the final

state are not measured) are summed up. Here we also consider the three kinds of color flows

explicitly.

Real*8 AMP2CF(3) =: three results of the square of the whole amplitude corresponding to

the three kinds of color flows for the sub-process gg → Bc(B
∗
c ) + b+ c̄.

Real*8 FINCOL(5,16) =: 16 possible helicity amplitudes for the process, where the helicities

of the intermediate quarks have been summed up.

SUBROUTINE FIRST
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Purpose: to compute the nine basic basic functions Em,1,k(m = 1, · · · , 9; k = 1, 2, · · · , 64).

The correspondence of the nine functions to the Feynman diagrams is shown in Table II

and Table III. In the present case: IDK1=1, IDK2=2, IDP=3, IDQ0=8, IDB1=4, IDB2=6,

IDC1=7, IDC2=5.

SUBROUTINE SECOND

Purpose: to compute the nine basic functions, Em,2,k(m = 1, · · · , 9; k = 1, · · · , 64) ob-

tained from Em,1,k by gluon exchange. Here IDK1=2, IDK2=1, IDP=3, IDQ0=8, IDB1=4,

IDB2=6, IDC1=7, IDC2=5.

SUBROUTINE THIRD

Purpose: to compute the nine basic basic functions, Em,3,k(m = 1, · · · , 9; k = 1, · · · , 64)

obtained from Em,1,k by b, c quark exchange and b̄, c̄ antiquark exchange. Here IDK1=1,

IDK2=2, IDP=3, IDQ0=8, IDB1=7, IDB2=5, IDC1=4, IDC2=6.

SUBROUTINE FOURTH

Purpose: to compute the nine basic basic functions, Em,4,k(m = 1, · · · , 9; k = 1, · · · , 64) ob-

tained from Em,3,k by gluon exchange. Here IDK1=2, IDK2=1, IDP=3, IDQ0=8, IDB1=7,

IDB2=5, IDC1=4, IDC2=6.

FUNCTION DOTUP(I,J)

Purpose: to compute the dot-product of two momenta.

Integer I,J=: codes of the two particles.

FUNCTION INPUP(IP,JP)

Purpose: to compute the inner product of two spinors with light-like momenta based on the

formula presented in APPENDIX A.

Integer IP, JP=: codes of the two particles.

FUNCTION SPPUP(IP,KP,JP)

Purpose(s): to calculate the spinor product with the formula presented in Appendix A.

Integer IP,JP,KP=: codes of the three particles.

FUNCTION POLSPPUP(I)

Purpose: to compute the spinor product involving the B∗
c meson polarization vectors with

the formula presented in Appendix B.

Integer I=: one of the three polarization vectors for B∗
c .
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FIG. 9: Bc-pT and Bc-Y (rapidity) distributions for the subprocess gg → Bc + b+ c̄ with different

center-of-mass energies
√
s̄ =20 GeV(I), 30 GeV(II) and 60 GeV(III). The solid line shows the

present results and the dotted line shows the results obtained in Ref.[7].
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c ) + b + c̄, with αs = 0.2, mb =

4.9 GeV and mc = 1.5 GeV. The solid (dotted) line corresponds to the Bc (B∗
c ) production.
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s̄ distributions for the CTEQ3M parton distribution function by using αs in

the next-to-leading order (NLO) and adopting the characteristic energy scale squared Q2 = s̄/4,

where s̄ is the squared center-of-mass energy of the subprocess.
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