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What is Astroparticle Physics
(Particle Astrophysics?)

Particle
Physics

Astroparticle

Cosmology
&
Astrophysic

1) Use techniques from Particle Physics to advance Astronomy

2) Use input from Particle Physics to explain our Universe, and particles from outer
space to advance Particle Physics

In this lecture I’1l concentrate on the 2" topic



A quick look to our Universe



Astronomy Scales
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Our Galaxy: The Milky Way
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What do we know about our Universe ?

* Many things, including the facts
that...

— Particles are coming on Earth at energies
108 times larger than we are able to

produce...
— The Universe expands (Hubble ~1920):
galaxies are getting far with a simple Hubble'
relationship between distance & (kmis/Mpc)
recession speed l
You’re receding V= HOT
"y " 1
Buipeses e4.nox : ‘@ = recession  distance (Mpc

speed (km/s)
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Velocity (km/s)
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Once upon a time...
our Universe was smaller

Primordial singularity !!!
=> BIG BANG
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How far in time ?

» Extrapolating backwards the present expansion
speed towards the big bang

T = 1/H, ~ 14 billion years

(note that the present best estimate, with a lot of
complicated physics inside, 1s T = 13.7 £ 0.2 Gyr)

* Consistent with the age of the oldest stars



Hubble law in 2003: supernovae

Implosion Explosion of star Expansion of matter
of core of _. shock wave ~ 0.5 ¢

red giant

=T
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Supernova Supernova Remnant

SNla occurs at Chandra mass, 1.4 M_ = ‘Standard Candie’

measure brightness — distance: B =L/ 4rnd?

measure host galaxy redshift — get recession velocity

test Hubble’s Law: v =H d, at large distances



Expansion with Supernovae Ia
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Time & temperature (=energy)

* Once upon a time, our Universe was hotter

— Expansion requires work (and this 1s the most adiabatic
expansion one can imagine, so the work comes from
internal energy)
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Decoupling
v <> particlest+antiparticles
Y <> proton-antiproton
v <> electron-positron

(...)

then matter became stable
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Particle Physics after Big Bang

Magnetism

QED Electro

magnetism
Electroweak

~ Model
Weak Theor Weak Force
Grand = 7= Standard .
Unification = & model
Quantum QCD Nuclear Force
Gravity
?
Super
Unification
Universal
Gravitation

>
time since Big Bang

THE QUEST FOR HIGHER ENERGIES IS ALSO A TIME TRAVEL



The Universe today: what we see
is not everything

velocgity, v
radius, r
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e - M33 rotation curve

Luminous stars only small fraction of mass of galaxy
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Dark matter searches



Dark matter searches

- Astronomy Dark Matter Candidates
- Invisible macroscopic objects
- Non-luminous objects
- Black Holes
Particle Dark Matter Candidates
- Neutrinos
- WIMPs

observed
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from
- _ luminous disk
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Many sources radiate
over a wide range of
wavelengths

Ig (E/eV)
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102 Crab Nebula
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Crab pulsar

X-ray image
(Chandra)




Multi Messenger Astronomy

Radio Telescope Optical Telescope X - ray Satellite v - ray Telescope
( Bonn) (Palomar) (INTEGRAL/ESA) ( CAT Pyrenees)

Radio Visible light X - rays Y rays



Centre of Galaxy in Different Photon Wavelengths

Radio 408 Mhz m‘l

Infrared 1-3 um

Visible Light

Gamma Rays WI .



Multi-Messengers to see Whole Universe
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Gravitational Lensing by Dark Matter

Hubble Space Telescopel§
multiple 1images |
of blue galaxy |
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Reconstructed matter distribution

Black holes, etc.




Gravitational Lensing Searches
for MACHOs

~% < Haloof Dark Lines of view
Brown Dwarfs?
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Magellanic Cloud ~ 200 km/s on Earth




Neutrino Mass is not enough

P, = sin?20 sin?(1.27 Am’L/E),
Am mass difference, 6 mixing 10
angle, E energy of v, L
oscillation length

Recent evidence of m>0 from
-SuperKamiokande

-SNO

-K2K

-KamLAND

AM~ 0.01 eV
Mixing ~ maximal

..............

e




Candidates: only WIMPS are left

M >~ 40 GeV
if SUSY (LEP)

Dark matter could
be L'Hm;hm‘t-i[ of

=
i

Iy . SOIMNE O

none of these

}thhilﬂ']ili:'a 5

Name Y

s¥batomic relative (Weakly interacting | (MMssive compact / W with
What )it (ke electron that massive particies halovobjects) Dim / orMyitationa
fthl' havewno elect Also known as cold JI.!,u:':Ii,\ SIZE iJ!IL].'I!"lh "15'_5'-_*\ 50 intensd that
arE Ol '1”55 4| or ':'rl']:.'.‘.\'::".".'-_‘.!‘. "l-:‘l-”‘.t I [ { P G
made of grdingry
matier y
'_""_"'"_""" A

/7 \
i et || AN R T2 AN R
Are hypothetical | So magy would be
| requiped that it seams | abyndance shouy
unijkely that all they | hyve been detect
l,h’r. :!‘.‘I1'.'_t_'i could 0€ § /E:-:.-.;._.
1ade of them

Pros

Cons




Direct WIMP Detection

Rejection of background i1s the critical 1ssue
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WIMP Direct Detection: modulation

Elastic interaction on nucleus, typical y velocity ~ 250 km/s (B ~ 10~

Motion of Earth in the y wind

Recoil Spectrum
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Featureless recoil energy spectrum
---> looks like electron background

But... Annual modulation




WIMPs & monochromatic y emissions

Some dark matter candidates (e.g. X q
SUSY particles) would lead to mono- @ _oryyorZy

energetic y lines through annihilation A 1

100

Good energy resolution in
the few % range is needed
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Matter/Energy in the Universe: Conclusion

Qtotal — QM + QAN 1

matter dark energy

Must be something new

MATTER / ENERGY in the UNIVERSE

Matter:
MATTER COMPOSTITION ; I DARK ENERGY
DM ID‘M-M MATTER QM = Qb + + QCDM - O ’ 3
I,s I baryons cold dark matter

Baryonic matter :
VY e ® Q, ~0.04

stars, gas, brown dwarfs, white dwarfs

NEUTRINOS

0.01

Quppy~ 0.23

WIMPS/neutralinos, axions

0.001




