Experimental Astroparticle Physics(a short introduction)

Alessandro De Angelis University of Udine & INFN Trieste

29 January 2004

Lectures 1 & 2

What is Astroparticle Physics (Particle Astrophysics?)

- 1) Use techniques from Particle Physics to advance Astronomy
- 2) Use input from Particle Physics to explain our Universe, and particles from outer space to advance Particle Physics

In this lecture I'll concentrate on the 2nd topic

A quick look to our Universe

Astronomy Scales

4.5 pc € ERIDANI • IO 30/ 40 19 T CETI 1.5 pc SUN a CENTAUR BARNARD'S 25 ALTAIR

4.5 pc

Nearest Galaxies

450 kpc

150 Mpc

1 pc \sim 3.3 ly

Our Galaxy: The Milky Way

What do we know about our Universe?

- Many things, including the facts that...
 - Particles are coming on Earth at energies
 10⁸ times larger than we are able to produce...
 - The Universe expands (Hubble ~1920):
 galaxies are getting far with a simple
 relationship between distance &
 recession speed

Redshift

Hubble's law

Once upon a time... our Universe was smaller

Primordial singularity !!!

How far in time?

 Extrapolating backwards the present expansion speed towards the big bang

 $T \approx 1/H_0 \sim 14$ billion years

(note that the present best estimate, with a lot of complicated physics inside, is $T = 13.7 \pm 0.2$ Gyr)

Consistent with the age of the oldest stars

Hubble law in 2003: supernovae

SNIa occurs at Chandra mass, 1.4 $M_{sun} \Rightarrow$ 'Standard Candle'

measure brightness \rightarrow distance: B = L / $4\pi d^2$

measure host galaxy redshift \rightarrow get recession velocity

test Hubble's Law: v = H d, at large distances

Expansion with Supernovae Ia

redshift → recession velocity

Deviation from Hubble's law The expansion accelerates $\Omega_{\Lambda} \sim 0.7$

Time & temperature (=energy)

- Once upon a time, our Universe was hotter
 - Expansion requires work (and this is the most adiabatic expansion one can imagine, so the work comes from internal energy)

$$T \sim \frac{15}{\sqrt{t}} 10^9 K$$

Decoupling

```
\gamma \leftrightarrow particles+antiparticles \gamma \leftrightarrow proton-antiproton \gamma \leftrightarrow electron-positron (...)
```

Two epochs

Time

Particle Physics after Big Bang

time since Big Bang

THE QUEST FOR HIGHER ENERGIES IS ALSO A TIME TRAVEL

The Universe today: what we see is not everything

Gravity: $G M(r) / r^2 = v^2 / r$ enclosed mass: $M(r) = v^2 r / G$

Luminous stars only small fraction of mass of galaxy

Dark matter searches

Dark matter searches

- Astronomy Dark Matter Candidates
 - Invisible macroscopic objects
 - Non-luminous objects
 - Black Holes
- Particle Dark Matter Candidates
 - Neutrinos
 - WIMPs

Crab pulsar

Multi Messenger Astronomy

Radio Telescope (Bonn)

Optical Telescope (Palomar)

X - ray Satellite (INTEGRAL/ESA)

γ - ray Telescope (CAT Pyrenees)

View of sky in Galactic Coordinates in four different photon wavelengths

Radio Visible light

X - rays

γ rays

Centre of Galaxy in Different Photon Wavelengths

Multi-Messengers to see Whole Universe

Gravitational Lensing by Dark Matter

Black holes, etc.

Gravitational Lensing Searches for MACHOs

Neutrino Mass is not enough

 $P_{dis} = \sin^2 2\theta \sin^2 (1.27 \Delta m^2 L/E),$ Δm mass difference, θ mixing angle, E energy of ν , L oscillation length

Recent evidence of m>0 from

- -SuperKamiokande
- -SNO
- -K2K
- -KamLAND

ΔM~ 0.01 eV Mixing ~ maximal

Candidates: only WIMPS are left

 $M > \sim 40 \text{ GeV}$ if SUSY (LEP)

Dark matter could be composed of any, some or none of these possibilities				
Name	Neutrinos	WIMPs	MACHOs	Black holes
What they are	Subatomic relatives of the electron that have no electrical charge and interact only weakly with ordinary matter	(Weakly interacting massive particles) Also known as cold dark matter	(Massive compact halo objects) Dim Jupitex-size planets or white dwarf stars made of ordinary matter	Objects with gravitational fields so intense that light cannot escape from them
Pros	Known to exist in great numbers	Existence is predicted by theories	The simplest theory	Strongly predicted by general relativity
Cons	canyot account for existing cosmic structure	Are hypothetical	So mazy would be required that it seems unlikely that all the dark matter could be made of them	Their presence in such abundance should have been detected already

Direct WIMP Detection

Rejection of background is the critical issue

WIMP Direct Detection: modulation

Elastic interaction on nucleus, typical χ velocity ~ 250 km/s (β ~ 10⁻¹

Motion of Earth in the χ wind

χ $E_R \sim 10 \text{ keV}$

Recoil Spectrum

Featureless recoil energy spectrum ---> looks like electron background

But... Annual modulation

WIMPs & monochromatic γ emissions

Some dark matter candidates (e.g. SUSY particles) would lead to monoenergetic γ lines through annihilation

Good energy resolution in the few % range is needed

Matter/Energy in the Universe: Conclusion

Must be something new

MATTER / ENERGY in the UNIVERSE

$$\Omega_{\text{total}} = \Omega_{\text{M}} + \Omega_{\Lambda} \sim 1$$

matter dark energy

Matter:

$$\Omega_{\rm M} = \Omega_{\rm b} + \Omega_{\rm v} + \Omega_{\rm CDM} \sim 0.3$$

baryons neutrinos cold dark matter

Baryonic matter:

$$\Omega_{\rm b} \sim 0.04$$

stars, gas, brown dwarfs, white dwarfs

Neutrinos:

$$\Omega_{\rm v} \sim 0.003$$

Dark Matter:

$$\Omega_{\text{CDM}} \sim 0.23$$

WIMPS/neutralinos, axions