

### Performance Update ATLAS B Physics

- Detector and trigger
- Precision measurements
- Rare decays
- B production
- Summary





Beauty 2003, Carnegie Mellon 14–18 Oct 2003 Paula Eerola for the ATLAS Collaboration

**U**NIVERSITY

**UND** 

### B decays at LHC

JUnlike BaBar, Belle, access to  ${f B}_{s}$  and  $\Lambda_{b}$  decays  $(B_s \rightarrow KK, B_s \rightarrow D_sK, B_s \rightarrow J/\psi\phi(\eta), \Lambda_b \rightarrow J/\psi\Lambda...)$ ■Much higher statistics than at the Tevatron \* Overconstrain the unitarity triangles (B<sub>d</sub>→K\* γ, B<sub>d</sub>→K\*μμ, B<sub>s</sub>→μμ . . .) □Access to rare b-decays Drecision CPV measurements Mixing measurements  $(B_d \rightarrow J/\psi K^0_{S...})$ 

New particles may show up in loop diagrams, overconstrain will allow to disentangle SM

Search for New Physics beyond SM



4\* SIG

TOWA

is a requirement

High statistic

in the second









ATLAS/CMS and LHCb are complementary

|    |                                     |                  | a 10 2 ATLAS/CMS |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                                                         |                                                          |                                                               |                        |                         | -2 0 2 4                     | eta of B-nadr                                   | NA * SIG                         | AN RVMON |   | 8 0.04 2003  |
|----|-------------------------------------|------------------|------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|------------------------|-------------------------|------------------------------|-------------------------------------------------|----------------------------------|----------|---|--------------|
|    | ape                                 | प <sup>-</sup> ध | <u> </u>         | Ta               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | qn                                    |                                                         |                                                          |                                                               |                        | ics"                    |                              |                                                 |                                  |          | ] | la<br>2014_1 |
| C  | inelastic = 80 mb                   | 00 µb            | LHCb             | Forward detector | one b in 1.9 <n<4.9,< th=""><th><math>p_{T}&gt;2GeV \rightarrow \sigma = 230</math></th><th><math>L = 2 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}</math></th><th></th><th><math>1 y(x) = x^{-1} \cos^{-1} x^{-1}</math></th><th>Total number of</th><th>reconstructed "phys</th><th>events 3.4 x 10<sup>6</sup></th><th>• 1.7 x 10<sup>6</sup> bb <math>\rightarrow J/\psi</math></th><th><math>\bullet 1.7 \ge 10^6</math> hadronic</th><th></th><th></th><th>Paula Eero</th></n<4.9,<> | $p_{T}>2GeV \rightarrow \sigma = 230$ | $L = 2 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$   |                                                          | $1 y(x) = x^{-1} \cos^{-1} x^{-1}$                            | Total number of        | reconstructed "phys     | events 3.4 x 10 <sup>6</sup> | • 1.7 x 10 <sup>6</sup> bb $\rightarrow J/\psi$ | $\bullet 1.7 \ge 10^6$ hadronic  |          |   | Paula Eero   |
| TH | $\sigma$ total = 100 mb, $\sigma$ i | $\sigma bb = 50$ | ATLAS            | Central detector | one b in  n <2.5, p <sub>T</sub> >10GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\Rightarrow \sigma = 100 \ \mu b$    | $L = 1-2 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$ | Rare decays $L=10^{34}$ cm <sup>-2</sup> s <sup>-1</sup> | $1 y(\underline{a}) 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$ : | <b>Fotal number of</b> | reconstructed "physics" | events 2.6 x 10 <sup>6</sup> | • dominated by bb →J/Ψ                          | • hadronic $<10^{5}$ (all u-tag) | Ď        |   | 3 Barutty    |

## The ATLAS Detector

+ Good tracking - complementary systematics to detectors and the transition radiation tracker inside a solenoidal 2T field (see H. G. Moser) The Inner Detector (ID): pixels, silicon

+ e/ $\pi$  separation in TRT

the LHCb case

- marginal  $\pi/K$  identification

ID, calorimeters and muon system cover  $|\eta|$ <2.5 + Access to central region good for production



Muon trigger and reconstruction down to p<sub>T</sub>=5 (3) GeV in muon chambers, tile calorimeter, ID.

Electron trigger and reconstruction down to p<sub>T</sub>=2 GeV in LAr calorimeter, TRT (see S. George) + Better statistics than LHCb in all leptonic channels
+ Very good for leptonic rare decays (high luminosity running)
- Must share trigger bandwidth with other physics hadronic channels suffer



14-18 0-+ 2003

## ATLAS construction

- 2003: part of the underground experimental area (UX15) has been delivered to ATLAS. Nov 2003: start installing feet and rails. Installation status: installation activities at LHC Point 1 have started. April
  - All subdetectors are under construction, some already completed (tile calorimeter). Jan 2004 first detector parts in the cavern: barrel calorimeter, tile calorimeter first, then LAr. Mar 2004 barrel toroid coils.
- The "initial" detector ready for global commissioning and cosmics summer 2006, ready for beam in April 2007. Some components will be staged for later installation.





Shielding installation in the underground cavern, status 2003.

installed in position (October 2004) Paula Eerola

Beauty 2003 Cannedia Mellon 14-18 Oct 2003

SIG

95

Engineering simulation: the Barrel Toroid and the Barrel Calorimeter . E ATLAS initial detector

| Detector layouts            | Complete | Initial | Physics TDR 1999 |
|-----------------------------|----------|---------|------------------|
| Radius of B-layer           | 5 cm     | 5 cm    | 4.3 cm           |
| B-layer pixel length in z   | 400 µm   | 400 µm  | 300 µm           |
| Middle pixel layer          | yes      | missing | yes              |
| Pixel disk #2, TRT C-wheels | yes      | missing | səh              |

| 900 400 - Initial           | / səir   | Ent<br>200                                  |                                         |                                                      | Decay time resolution                         | $B_{s} \rightarrow D_{s}(\phi \pi) \pi$ | · W ·       |
|-----------------------------|----------|---------------------------------------------|-----------------------------------------|------------------------------------------------------|-----------------------------------------------|-----------------------------------------|-------------|
| single                      | TDR      | 42 MeV                                      | 19 MeV                                  | <mark>layout): cor</mark><br>tion > 60 ps            | ement                                         | same t-                                 |             |
| esolution, s<br>aussian fit | Initial  | 46 MeV                                      | 21 MeV                                  | cays (TDR<br>ore resolu                              | ∆m <sub>s</sub> measur                        | e appr. the                             | raula teroi |
| Mass r<br>G                 | Complete | 46 MeV                                      | 21 MeV                                  | <mark>n for B<sub>s</sub> de</mark><br>ial layout: c | in view of /<br>ion).                         | ayouts have                             |             |
| Channel                     |          | $B_{s} \rightarrow D_{s}(\phi \ \pi) \ \pi$ | $B_d \rightarrow J/\psi(\mu_6\mu_3)K^0$ | Proper time resolutio<br>resolution 52 fs. Init      | cuts to be optimized<br>(N(events) vs resolut | Initial and complete                    |             |
|                             |          |                                             |                                         | •                                                    |                                               | •                                       |             |

| At o o At o o the o | B-Physics Trigger | • The ATLAS Trigger will consist of three levels<br>$\bigcirc$ 40 MHz $\rightarrow$ Level-1 $\rightarrow$ O(20 kHz) $\rightarrow$ Level-2 $\rightarrow$ O(1-5 kHz) $\rightarrow$ Event<br>Filter $\rightarrow$ O(200 Hz). | <ul> <li>O B-physics 'classical' scenario: LVL1 muon with p<sub>T</sub> &gt; 6 GeV,  η  &lt; 2.4,<br/>LVL2 muon confirmation, ID full scan.</li> <li>The B-physics trigger strategy had to be revised</li> </ul> | <ul> <li>&gt; changed LHC luminosity target (1 → 2×10<sup>33</sup> cm<sup>-2</sup>s<sup>-1</sup>)</li> <li>&gt; changes in detector geometry, possibly reduced detector at start-up</li> <li>&gt; tight funding constraints</li> </ul> | <ul> <li>Alternatives to reduce resource requirements</li> <li>require at LVL1, in addition to single-muon trigger, a second muon, a<br/>Jet or EM RoI; reconstruct tracks at LVL2 and EF within RoI</li> </ul> | <ul> <li>flexible trigger strategy: start with a di-muon trigger for higher<br/>luminosities, add further triggers (hadronic final states, final states<br/>with electrons and muons) and/or lower the thresholds later in the states</li> </ul> | beam-coast/for low-luminosity fills. | Paula Eerola<br>Paula Eerola<br>Aallon 14_18 Oc+ 2003 |
|---------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------|
|                     |                   |                                                                                                                                                                                                                           |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                  |                                      |                                                       |

## **B-Physics Trigger II**

New Scenario:

- o di-muon trigger: additional muon at LVL1. Effective selection of **B-physics trigger types** (always single muon at LVL1)
- hadronic final states trigger : RoI-guided reconstruction in ID at channels with  $J/\psi(\mu^+\mu^-)$ , rare decays like  $B o \mu^+\mu^-(X)$ , etc. 0
- LVL2, RoI from LVL1 Jet trigger. Selection of hadronic modes e.g.  $B_{
  m s}$  $\downarrow \cup \bigcup_{s} \pi$ 
  - O electron-muon final states trigger: RoI-guided reconstruction in TRT at LVL2, RoI from LVL1 EM trigger. Selection of electrons, e.g.  $J/\psi$ +)6⁺6'
- 'classical' scenario as fall-back
- Results are promising
- Strong reduction in processing requirements compared to previous strategy that involved full scan of Inner Detector at level-2.
  - Further studies needed.



Reduty 2003 Connecte Mellon 14-18 0+ 2003 Paula Eerola

| ά                 | puno                                                                                      | 3→µ6                               |                       |                                            |                             |                                       |                                         |                                                                                                         |                              |
|-------------------|-------------------------------------------------------------------------------------------|------------------------------------|-----------------------|--------------------------------------------|-----------------------------|---------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------|
| sin2 <sub>β</sub> | ith simulate<br>tion, backgr<br>'out.                                                     | J/ψ(ee) + E                        | 15k<br>16             | 0.018                                      | -<br>0.018                  |                                       |                                         | B⇒hh.<br>Ieasurement                                                                                    | .WV                          |
| :nts:             | kelihood fit w<br>ong tag frac<br>lere. TDR lay                                           | J/ψ(μ6μ5)                          | 250k<br>32            | 0.030                                      | 0.019<br><mark>0.016</mark> | ) + 0.012                             | 0.005                                   | sin(∆m t)) in<br>/T  <sup>2</sup> ).<br>\bined LHC m                                                    | 18 0c+ 2003                  |
| ureme             | . <mark>Maximum lik</mark><br>robability, wi<br>n neglected h                             | J/\u00c7                           | 490k<br>28            | 0.023                                      | 0.015<br>0.0126             | Total<br>J/ψ(μ6μ5)<br>.I/wree). E     | oround                                  | $(\Delta m +) + A_{mix}$<br>$(\Delta m +), 0(P)$<br>(1P)<br>$(21 \rightarrow com)$                      | ula Eerola<br>Sie Mellon 14. |
| on meas           | t with B <sub>d</sub> →J/yK <sup>0</sup> S<br>e resolution, tag p<br>:t CP violation tern | tm <sup>-2</sup> s <sup>-1</sup> s | ucted evts)           | cal                                        |                             | 0.010                                 | atics<br>Arv. tagging, hack             | ngle α: fit (A <sub>dir</sub> cos<br>depend on α, δ (o<br>i(A <sub>dir</sub> )=0.16, σ(A <sub>mix</sub> | Pai<br>Pairty 2003 Conner    |
| Precisio          | <mark>in2B measuremen</mark><br>iputs: proper tim<br>omposition. Direc                    | 3 years $(a) 10^{33}$              | N(all reconstr<br>S/B | <mark>Δsin2β statisti</mark><br>Lepton tag | Jet/charge tag<br>Total     | Total<br>J/γ(μ6μ3) +<br>.I/ли(ее) В⇒ш | <u>Δsin2β system</u><br>nrod, asymmetry | Sensitivity to a<br>Adin, A <sub>mix</sub> in SM<br>ATLAS alone: o                                      |                              |

n and



| B <sub>c</sub> Studies in ATLAS | <ul> <li>The expected large production rates at the LHC will allow for precision<br/>measurements of B, properties</li> </ul> | o recent estimates for ATLAS (assuming f(b → B <sub>c</sub> )~10 <sup>-3</sup> , 20 fb <sup>-1</sup> , LVL1 muon with $p_+ > 6$ GeV  n  < 2.4) | • ~5600 B <sub>c</sub> $\rightarrow$ J/ $\psi$ $\pi$ produced events<br>• ~100 R $\rightarrow$ R $\pi$ produced events | • Channels studied so far: $B_c \rightarrow J/\psi \pi$ (mass measurement), $B_c \rightarrow J/\psi \mu v$ | <ul> <li>MC generation of B<sub>c</sub> events using standard tools is CPU intensive.</li> </ul> | <ul> <li>Implementation of two MC generators in PYTHIA 6.2</li> <li>Encompation Approximation Model MC</li> </ul> | <ul> <li>Full Matrix Element MC (C. Driouichi et al., hep-ph/0309120): based</li> </ul> | on the "extended helicity" approach (grouping of Feynman diagrams | into gauge-invariant sub-groups to simplify calculations, never done | for gg $\rightarrow$ QQ before). pQCD to $O(\alpha_s^4)$ , 36 diagrams contributing.* $s_{1G}$ |  |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|
|                                 | •                                                                                                                             |                                                                                                                                                |                                                                                                                        | •                                                                                                          | •                                                                                                | •                                                                                                                 |                                                                                         |                                                                   |                                                                      |                                                                                                |  |



















VMQ.

in the second

| ys B <sup>v</sup> s,d⇒µ⁺µ⁻ | »d occur only at loop level in SM<br>ics | d,s v µ                                                                                          | dd 1.5x10 <sup>-10</sup> (B <sub>d</sub> ) (SM, "optimistic")<br>deal for new physics observation.<br>-luminosity data-taking. After 1 year at<br><b>1.3o signal</b> |                                               | •The difference with CMS can be attributed to<br>better vertex reconstruction precision and | •There is an indication of possible improvement of | backgrouna conditions with another vertex fit<br>procedure. | la Eerola |
|----------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------|-----------|
| eca                        | s or b-<br>w phys                        |                                                                                                  | $(B_s)$ al<br>BR $\rightarrow i$<br>S high<br>$(B^{-1}) - 4$                                                                                                         |                                               | BG                                                                                          | 660                                                | <6.4                                                        | Pau       |
| e d                        | with b⇒<br>be of ne                      | u,c,t<br>u,c,t                                                                                   | 3.5×10 <sup>-9</sup><br>re, tiny<br>ger allow<br>ty (100                                                                                                             | <sup>4</sup> cm <sup>-2</sup> s <sup>-1</sup> | Signal<br>Bd->μμ                                                                            | 14                                                 |                                                             |           |
| Rar                        | decays (<br>→ pro                        | d<br>n<br>n<br>n<br>n<br>n<br>n<br>n<br>n<br>n<br>n<br>n<br>n<br>n<br>n<br>n<br>n<br>n<br>n<br>n | <ul> <li>µµ: BR=</li> <li>signatu</li> <li>uon triguuon trigu</li> </ul>                                                                                             | year 10 <sup>3</sup>                          | Signal<br>Bs->µµ                                                                            | 92                                                 | 26                                                          |           |
|                            | FCNC B<br>BR < 10 <sup>-t</sup>          |                                                                                                  | × × ×<br>B <sub>s,d</sub> ↓<br>Di-m<br>high                                                                                                                          | After 1                                       |                                                                                             | ATLAS                                              | CMS                                                         |           |
| De                         |                                          |                                                                                                  |                                                                                                                                                                      |                                               |                                                                                             | ·                                                  |                                                             | 15        |

The second









Reality 2003 Camerie Mellan 14-18 Oct 2003

Paula Eerola

B production at LHC II

CDF measurement of b-b correlations using  $\mu$  + jet data







2





production plane. The polarization vanishes as  $\eta 
ightarrow 0$  because of p-p In p-p collisions  $\Lambda_{
m b}$  baryon will be polarized perpendicularly to symmetry. At LHCb polarization higher than ATLAS/CMS.

Angular distribution  $\Lambda_{\rm h} \rightarrow J/\psi(\mu\mu)\Lambda(p\pi)$  depends on 5 angles (fig) + 6 parameters of 4 helicity amplitudes and polarization P<sub>b</sub> . Helicity amplitudes and P<sub>b</sub> - simultaneously determined.



3 years will allow precision 75000  $\Lambda_{\rm h} \rightarrow J/\psi(\mu\mu)\Lambda(p\pi)$  in  $\delta P_{\rm b} = 0.016.$ 

Also studied

Properties of beauty baryons,

I\* SIG

RVMQL

AN AN

Reduty 2003 Connecte Mellon 14-18 0+ 2003

5

Paula Eerola

### Conclusions

# ATLAS is preparing a multithematic B-physics program.

Includes B-decays and B-production.

ATLAS B-physics trigger strategy revised to maximize physics potential within tight funding constraints:

Rely on dimuon trigger for initial luminosity  $2 \times 10^{33}$  cm<sup>-2</sup>s<sup>-1</sup>, extending the selection when the luminosity falls.

### The main emphasis will be on underlying mechanisms of CP violation and evidence of New physics.

ATLAS is especially precise in measurement of angle  $\beta$ .

In  $B_s \rightarrow J/\psi \phi(\eta)$  large CP violation would indicate new physics.

There is sensitivity to  $\Delta m_{
m s}$  beyond SM expectations.

The expected large production rates at the LHC will allow for precision measurements of B<sub>c</sub> properties:

**Rare decays B**  $\rightarrow \mu\mu(X)$  have a favourable experimental signature, allowing measurements also at the nominal LHC luminosity  $10^{34}$  cm<sup>-2</sup>s<sup>-1</sup>. e.g. ~5600 B<sub>c</sub>  $\rightarrow$  J/ $\psi \pi$  produced events, ~100 B<sub>c</sub>  $\rightarrow$  B<sub>s</sub>  $\pi$  prod. events

Will measure branching ratio of Bs  $o \mu \mu \,$  which is in SM of order Br<(10<sup>-9</sup>)

Precision measurements will be done for  $B \to K^*\mu\mu$ .

Beauty production and bb correlations in central LHC collisions will be measured tory of Large sample of B→K\*y allows for probing New physics effects. QCD tests.

Complementary phase space region to LHCb.

Paula Eerola Reauty 2003 Carneaie Mellon 14-18 Oct 2003





Paula Eerola Beauty 2003 Canneaie Mellon 14-18 Oct 2003

**Backup slides** 

in the second



A

| Initial                   | 46   | 80             | 17                               | 21             | 26                 |
|---------------------------|------|----------------|----------------------------------|----------------|--------------------|
| Complete                  | 46   | 79             | 17                               | 21             | 25                 |
| TDR                       | 42   | 69             | 15                               | 19             | 22                 |
| lution<br>Iss fit<br>'c²] | π) π | µ <sub>6</sub> | μ <sub>6</sub> μ <sub>3</sub> )φ | $u_6\mu_3)K^0$ | (π <b>q</b> )Λ(μπ) |



Paula Eerola Beauty 2003 Canneaie Mellon 14-18 Oct 2003 **B-Physics Trigger III** 

- Di-muon trigger
- o effective selection of channels with J/ψ(μ⁺μ⁻), rare decays like B → μ⁺μ⁻(X), etc.
- minimum possible thresholds:
   p<sub>T</sub> > 5 GeV (Muon Barrel)
   p<sub>T</sub> > 3 GeV (Muon End-Cap)
- actual thresholds determined by LVL1 rate
- at LVL2 and EF: confirmation of muons using the ID and Muon Precision Chambers
- at EF mass and decay-length cuts, after vertex reconstruction
- Trigger rates (2×10<sup>33</sup> cm<sup>-2</sup>s<sup>-1</sup>):
   ~200 Hz after LVL2, ~10 Hz after EF



Heavy Quarkonium**aWarkanan**a FNAL, September 20–22, 2<mark>09</mark>1 Beauty 2003 Connecte Mellon 14\_18 Oct 2003

> Armin NAIRZ 25

in the second

ATLAS initial detector

| Detector layouts            | Complete | Initial | Physics TDR 1999 |
|-----------------------------|----------|---------|------------------|
| Radius of B-layer           | 5 cm     | 5 cm    | 4.3 cm           |
| B-layer pixel length in z   | 400 µm   | 400 µm  | un 005           |
| Middle pixel layer          | yes      | missing | yes              |
| Pixel disk #2, TRT C-wheels | yes      | missing | yes              |

| Channel                                                | Mass re<br>Ga | esolution,<br>aussian fit | single<br>t |
|--------------------------------------------------------|---------------|---------------------------|-------------|
|                                                        | Complete      | Initial                   | TDR         |
| $B_s \to D_s(\phi \ \pi) \ \pi$                        | 46 MeV        | 46 MeV                    | 42 MeV      |
| $B 	o \mu_6 \mu_6$                                     | <b>VaM 67</b> | 80 MeV                    | V9M 69      |
| $B_s \rightarrow J/\psi(\mu_6\mu_3)\phi$               | 17 MeV        | 17 MeV                    | 15 MeV      |
| $B_d 	o J/\psi(\mu_6\mu_3)K^0$                         | 21 MeV        | 21 MeV                    | 19 MeV      |
| $\Lambda_b \rightarrow J/\psi(\mu\mu) \ \Lambda(p\pi)$ | 25 MeV        | 26 MeV                    | 22 MeV      |
|                                                        |               |                           |             |



26

Paula Eerola Baaiity 2003 Cannacia Mallon 14\_18 Oct 2003 Software & physics channels

|                                | Detector<br>layouts                   | TDR    | Complet | 0 | Initial |
|--------------------------------|---------------------------------------|--------|---------|---|---------|
| nnels                          | Radius of b-layer                     | 4.3 cm | 5 cm    |   | 5 cm    |
| τ) π                           | Longitudinal pixel<br>size of b-layer | 300 m  | 400 m   |   | 400 m   |
| 6                              | Middle pixel layer                    | yes    | yes     |   | missing |
| <sub>5</sub> μ <sub>3</sub> )φ | Pixel disk #2 and<br>forward TRT      | yes    | yes     |   | missing |
| μ <sub>3</sub> )K <sup>0</sup> | wheels                                |        |         |   |         |
| )                              |                                       |        |         |   |         |
| $h_6\mu_3$                     | Software                              | Com    | olete   | Γ | initial |

| SoftwareCompleteInitialDetector simulationatsim 6.0.2atlsim 6.0.2Reconstructionatrecon6.5.0atrecon6.5.0Reconstructionatrecon6.5.0(xKalman)AnalysesCBNT, CTVMFT vertexing |              | 14-18 0+ 2003 | traura cerona<br>ty 2003 <i>C</i> anneoio Mallon |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|--------------------------------------------------|
| SoftwareCompleteInitialDetector simulationatsim 6.0.2atlsim 6.0.2Reconstructionatrecon6.5.0atrecon6.5.0(xKalman)(xKalman)(xKalman)                                       | T vertexing  | CBNT, CTVMF   | Analyses                                         |
| SoftwareCompleteInitialDetector simulationatsim 6.0.2atlsim 6.0.2Reconstructionatrecon6.5.0atrecon6.5.0                                                                  | (×Kalman)    | (xKalman)     |                                                  |
| SoftwareCompleteInitialDetector simulationatsim 6.0.2atlsim 6.0.2                                                                                                        | atrecon6.5.0 | atrecon6.5.0  | Reconstruction                                   |
| Software complete linitial                                                                                                                                               | atlsim 6.0.2 | atsim 6.0.2   | Detector simulation                              |
|                                                                                                                                                                          | Initial      | Complete      | Software                                         |

Physics channels  $B_{s} \rightarrow D_{s}(\phi \pi) \pi$   $B \rightarrow \mu_{6}\mu_{6}$   $B_{s} \rightarrow J/\psi(\mu_{6}\mu_{3})\phi$   $B_{d} \rightarrow J/\psi(\mu_{6}\mu_{3})K^{0}$   $\Lambda_{b} \rightarrow J/\psi(\mu_{6}\mu_{3})$ 

27

Bool

**B-hadrons** — proper time resolution

| TDR                     | 67 fs            | 69 fs | 63 fs                    | 69 fs                                                             | 73 fs                         |
|-------------------------|------------------|-------|--------------------------|-------------------------------------------------------------------|-------------------------------|
| <u>Single Gauss</u> fit | $B_s 	o Ds\ \pi$ | B →μμ | B <sub>s</sub> →J/ψ(μμ)φ | B <sub>d</sub> →J/ψ(μ <sub>6</sub> μ <sub>3</sub> )K <sup>0</sup> | Λ <sub>b</sub> →J/ψ(μμ) Λ(pπ) |

| 2   |
|-----|
| Ō   |
| 5   |
| .0  |
| 2   |
|     |
| S   |
| Ü   |
| N   |
| >   |
| 4   |
|     |
| m i |
|     |

# The ATLAS Trigger will consist of three levels

- Level-1 (40 MHz  $\rightarrow$  O(20 kHz))
- muons, Regions-of-Interest (RoI's) in the Calorimeters
- B-physics ('classical' scenario): muon with  $p_T$  > 6 GeV,  $|\eta|$  < 2.4
- O Level-2 (O(20 kHz) → O(1-5 kHz))
- RoI-guided, running dedicated on-line algorithms
- B-physics ('classical' scenario): muon confirmation, ID full scan
- Event Filter (O(1-5 kHz)  $\rightarrow$  O(200 Hz))
- offline algorithms, alignment and calibration data available
- The B-physics trigger strategy had to be revised
- o changed LHC luminosity target (1 ightarrow 2×10<sup>33</sup> cm<sup>-2</sup>s<sup>-1</sup>)
- o changes in detector geometry, possibly reduced detect<del>or <u>at</u></del> start-up

075

//RVMQ

AN AN

- o tight funding constraints
- Reduty 2003 Connecte Mellon 14-18 0+ 2003 Paula Eerola

|              | S                                                                            | ens                  | sitiv                            | ity          | to                         | angle                                | α                                                         |
|--------------|------------------------------------------------------------------------------|----------------------|----------------------------------|--------------|----------------------------|--------------------------------------|-----------------------------------------------------------|
| ₹_           |                                                                              |                      |                                  |              |                            |                                      |                                                           |
|              | Signal yields<br>by $(\underline{a})10^{33}$ cm <sup>2</sup> s <sup>-1</sup> | Atlas                | LHCb<br>5v                       | L L          | 1ax.likeliho<br>rom: *Pron | od computed<br>er time               | Simulateous fit of 6 contributing                         |
|              | Offline 2-body select.                                                       | 2.3k                 | 4.9k                             |              | *Invar                     | iant mass                            | decays parametrized by 9<br>coefficients, constrained by  |
|              | Mass resol [MeV]                                                             | 70                   | 17                               |              | *Flavo<br>*Speci           | ur at production.<br>fic ionisation. | on current experimental limits.                           |
| $\mathbf{v}$ | Signal/2-body bck                                                            | 0.19                 | 15                               |              | S                          | onal decav nara                      | metrized in terms of Ann. Ann.                            |
| S            | Signal/other bck                                                             | 1.6                  | >1                               |              | 5                          | $A_{div} \cos(\Delta m)$             | $(t) + A_{\text{min}} \sin(\Delta m t)$                   |
| 0            | 5Adir                                                                        | 0.16                 | 0.09                             | 7            | $A_{dir}$ , $A_{mix}$      | in SM depend o                       | on $\alpha$ , $\delta$ (or $\alpha_{off}$ ), $O( P/T ^2)$ |
| 0            | 5Amix                                                                        | 0.21                 | 0.07                             |              | A                          | ere used to deri                     | we sensitivity to $\alpha$                                |
| 0            | orrelation                                                                   | 0.25                 | 0.47                             |              |                            | F                                    | -                                                         |
| l            |                                                                              |                      |                                  |              |                            | AILAS                                | compensate large background                               |
|              |                                                                              | $\sigma_{\alpha}$ fo | or 2α-2α <sub>eff</sub> = 20°, ∣ | P/T =0.4±0%; | 30%,100%                   | with mu                              | ılti-channel fits.                                        |
|              | a-sensitivity as a                                                           |                      | D                                |              |                            |                                      |                                                           |
|              | function of $lpha$ and                                                       | <b>-&gt;</b><br>و«   | 14                               | >            | *****                      |                                      | The current theoretical                                   |
|              | theoretical uncerta                                                          | inty ,               | 12                               |              | ******                     |                                      | incertainty on [P/T],                                     |
|              | of  P/T  using full                                                          |                      |                                  |              |                            |                                      | 5 P/T ~30%, dominates                                     |
|              | LHC potential                                                                | -                    | <br>                             |              | $\sigma_{ P/T =30\%}$      |                                      | other systematical and                                    |
|              |                                                                              |                      | <u> </u>                         |              |                            |                                      | statistical errors of full LHC                            |
|              |                                                                              |                      | 9                                | 1            | X00                        |                                      | ootential.                                                |
|              |                                                                              |                      |                                  | 6            | $\overline{P/T} ^{=0\%}$   |                                      | N. W. W. S. I.S.                                          |
|              |                                                                              |                      | ******<br>*                      |              |                            |                                      | AN RVMON                                                  |
|              |                                                                              |                      | <b>7</b>                         |              | )                          | ,;;)<br>,;;)                         | (x/2) (x3)                                                |
|              |                                                                              |                      | 0<br>0<br>20<br>20               | 00 150       | 200 250                    | 300 350                              | CA A ALLE A                                               |
|              |                                                                              |                      |                                  | Paula Ee     | erola                      | <b>2</b> α                           | · ····································                    |
|              | 31                                                                           | <b>Dagity</b>        | 2002 201                         | M oiner      | allon 14.                  | -18 Oc + 200                         | 7                                                         |



Reduty 2003 Connecte Mellon 14-18 0+ 2003



|              |                                                                     |                                                |                                     |                  | -                           |                            |                                   | \$75 <b>*</b>                               |                                                       |                                  |
|--------------|---------------------------------------------------------------------|------------------------------------------------|-------------------------------------|------------------|-----------------------------|----------------------------|-----------------------------------|---------------------------------------------|-------------------------------------------------------|----------------------------------|
| cuts)        | than 2.3×10 <sup>-4</sup><br>AS data                                | CTVMFT (CDF)<br>Iman (private)                 | (10 <sup>4</sup> pb <sup>-1</sup> ) | <u>×Kalman</u>   | 0.41                        |                            | 0.33                              | (4.4±1.6) ×10 <sup>-3</sup>                 | 24±9                                                  |                                  |
| ignal (new   | ejection better<br>ar cuts for ATI                                  | procedures – (<br>dure from xKa                | * selection cuts                    |                  | 0.55                        |                            | 0.37                              | (0.9±0.2) ×10 <sup>-2</sup>                 | 54土15                                                 | : Eerola<br>Mallon 14_18 Oct 20  |
| Background,S | <ul> <li>CMS vertex cuts gives re<br/>Try to apply simil</li> </ul> | compare two vertex fit and dedicated fit proce | Efficiencies of verte               | Cuts (CTVMFT and | Error on the decay length L | <b>σ&lt;60μm;σ&lt;70μm</b> | $L/\sigma > 12$ ; $L/\sigma > 10$ | Both cuts together +<br>Cos(θ)>0.99987 (1°) | Number of BG events (with<br>mass and isolation cuts) | Paula<br>14 Reality 2003 Canacie |

<u>a</u>

#### Discussion

125 <u>8</u> 22 32 20 of decay length L vs. error on this value  $\sigma$ \*XKalman vertex fit gives a better rejection The quantities used for cuts can correlate The plot shows the profile histogram of this algorithm – events survived For xKalman it is correlated – i.e. This explain the better rejection larger decay length has larger errors (as it should be for BG) L > L\_cut will be removed by for the background events. than CTVMFT one cut o> o\_cut



Paula Eerola Reauty 2003 Carneaie Mellon 14-18 Oct 2003





# 2.8% rec. efficiency, 57 MeV mass resolution

#### evel 1: μ6

#### evel 2:

- cluster  $E_T$  cut, shower shape cuts,  $\pi^0$  rejection
- \*: 2 charged (opposite-sign) tracks, <sub>r</sub> cuts

#### vent Filter

- level-2 confirmation
  \*: vertexing, impact-parameter cuts
- Combinatorial background from  $bb \rightarrow \mu(6)X$  was considered. Background from  $B^0 \rightarrow K^* \pi^0$  is under investigation.

1\* SIG

RUMPE

in the second



Paula Eerola

| Installatior                                                                                                | n sch                          | nedul                          | 0                    |         |
|-------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------|----------------------|---------|
| <ul> <li>The schedule consists of 6<br/>partially overlapping + 50<br/>commissioning and 40 days</li> </ul> | ó major<br>days fc<br>s for co | phases<br>or globa<br>smic te: | which o<br>I<br>sts. | an      |
| Name                                                                                                        | 2003                           | 2004                           | 2005                 | 2006    |
| PHASE 1: Infrastructure                                                                                     |                                |                                |                      |         |
| PHASE 2: Barrel Toroid & Barrel Calorimeter                                                                 | 3 days                         |                                |                      |         |
| PHASE 3: End-cap Calorimeters & Muon Barre                                                                  |                                | 343 days                       |                      |         |
| PHASE 4: Big Wheels & Inner Detector                                                                        |                                | 283                            | days                 | ſ       |
| PHASE 5: End-Cap Toroid & Small Wheels                                                                      |                                |                                | 166 days             | ſ       |
| PHASE 6: Beam Vacuum, End wall Chambers,<br>Shielding                                                       |                                |                                | 53 d                 | ays     |
| Global Commissioning                                                                                        |                                |                                |                      | 50 days |
| Cosmic tests                                                                                                |                                |                                |                      | 40 days |
| ATLAS Ready For Beam                                                                                        |                                |                                |                      | 0 days  |

) Ma



Paula Eerola Reauty 2003 Canneaie Mellon 14-18 Oct 2003