IV. Space-time symmetries

\rightarrow Conservation laws have their origin in the

 symmetries and invariance properties of the underlying interactions\rightarrow Exact symmetry $=>$ conservation law $=>$ an observable whose absolute value cannot be defined ("non-observable")

Symmetries, conservation laws and "non-observables"

Symmetry transformation	Conservation law or selection rule	Non-observable
$\overline{\text { Space translation }}$	momentum	absolute spatial position
$\overline{\mathbf{x}}=\overline{\mathbf{x}}+\overline{\mathbf{x}}$	angular momentum	absolute spatial direction
Rotation	energy	absolute time
$\overline{\mathbf{x}}=>\overline{\mathbf{x}}$,	parity	"handedness" (absolute generalized right/left)
Time translation $\mathbf{t}=>\mathbf{t}+\delta \mathbf{t}$		
Reflection $\overline{\mathbf{x}}=\overline{\mathbf{x}}=\overline{\mathbf{x}}$		

Symmetry transformation	Conservation law or selection rule	Non-observable
Charge conjugation $\psi=>-q$	particle-antiparticle symmetry	absolute sign of electric charge
$\psi=>\mathrm{e}^{\mathrm{iL}} \theta \psi$	charge q	rel. phase between states of different q
$\psi=>\mathrm{e}^{\mathrm{iB}} \theta \psi$	lepton number L	rel. phase between states of different L

Translational invariance

When a closed system of particles is moved from one position in space to another, its physical properties do not change

Consider an infinitesimal translation:

$$
\vec{x}_{i} \rightarrow \vec{x}^{\prime}{ }_{i}=\vec{x}_{i}+\delta \vec{x}
$$

the Hamiltonian of the system transforms as

$$
H\left(\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{n}\right) \rightarrow H\left(\vec{x}_{1}+\delta \vec{x}_{,}, \vec{x}_{2}+\delta \vec{x}, \ldots, \vec{x}_{n}+\delta \vec{x}\right)
$$

In the simplest case of a free particle,

$$
\begin{equation*}
H=-\frac{1}{2 m} \nabla^{2}=-\frac{1}{2 m}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) \tag{40}
\end{equation*}
$$

From Equation (40) it is clear that

$$
\begin{equation*}
H\left(\vec{x}_{1}^{\prime}, \vec{x}_{2}^{\prime}, \ldots, \vec{x}_{n}^{\prime}\right)=H\left(\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{n}\right) \tag{41}
\end{equation*}
$$

which is true for any general closed system: the Hamiltonian is invariant under the translation
operator \hat{D}, which is defined as an action onto an arbitrary wavefunction $\psi(\vec{x})$ such that

$$
\begin{equation*}
\hat{D} \psi(\vec{x}) \equiv \psi(\vec{x}+\delta \vec{x}) \tag{42}
\end{equation*}
$$

For a single-particle state $\psi^{\prime}(\vec{x})=H(\vec{x}) \psi(\vec{x})$. From eq. (42) one obtains:

$$
\hat{D} \psi^{\prime}(\vec{x})=\psi^{\prime}(\vec{x}+\delta \vec{x})=H(\vec{x}+\delta \vec{x}) \psi(\vec{x}+\delta \vec{x})
$$

Since the Hamiltonian is invariant under translation,
$\hat{D} \psi^{\prime}(\vec{x})=H(\vec{x}) \psi(\vec{x}+\delta \vec{x})$.Using (42) and ψ^{\prime} definition
$\hat{D} \psi^{\prime}(\overrightarrow{\vec{x}})=D H(\vec{x}) \psi(\vec{x})=H(\vec{x}) \psi(\vec{x}+\delta \vec{x})=H(\vec{x}) \hat{D} \psi(\overrightarrow{\vec{x}})$
(43)

This means that \hat{D} commutes with Hamiltonian (a standard notation for this is $[\hat{D}, H]=\hat{D} H-H \hat{D}=0$)

Since $\delta \vec{x}$ is an infinitely small quantity, translation (42) can be expanded as

$$
\begin{equation*}
\psi(\vec{x}+\delta \vec{x})=\psi(\vec{x})+\delta \vec{x} \cdot \nabla \psi(\vec{x}) \tag{44}
\end{equation*}
$$

Form (44) includes explicitly the momentum operator $\hat{p}=-i \nabla$, hence the translation operator \hat{D} can be rewritten as

$$
\begin{equation*}
\hat{D}=1+i \delta \vec{x} \cdot \hat{p} \tag{45}
\end{equation*}
$$

Substituting (45) to (43), one obtains

$$
\begin{equation*}
[\hat{p}, H]=0 \tag{46}
\end{equation*}
$$

which is nothing but the momentum conservation law for a single-particle state whose Hamiltonian is invariant under translation.

Generalization of (45) and (46) for the case of multiparticle state leads to the general momentum
conservation law for the total momentum $\vec{p}=\sum_{i=1}^{n} \vec{p}_{i}$

Rotational invariance

When a closed system of particles is rotated about its centre-of-mass, its physical properties remain unchanged

Under the rotation about, for example, z-axis through an angle θ, coordinates x_{i}, y_{i}, z_{i} transform to new coordinates $x_{i}^{\prime}, y_{i}^{\prime}, z_{i}^{\prime}$ as following:

$$
\begin{gather*}
x_{i}^{\prime}=x_{i} \cos \theta-y_{i} \sin \theta \\
y_{i}^{\prime}=x_{i} \sin \theta+y_{i} \cos \theta \\
z_{i}^{\prime}=z \tag{47}
\end{gather*}
$$

Correspondingly, the new Hamiltonian of the rotated system will be the same as the initial one,

$$
H\left(\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{n}\right)=H\left(\vec{x}_{1}^{\prime}, \vec{x}^{\prime}{ }_{2}, \ldots, \vec{x}_{n}^{\prime}\right)
$$

Considering rotation through an infinitesimal angle $\delta \theta$, equations (47) transform to

$$
\begin{gathered}
x^{\prime}=x-y \delta \theta, y^{\prime}=y+x \delta \theta, z^{\prime}=z \\
(\theta \text { small }=>\cos \theta=1, \sin \theta=\delta \theta)
\end{gathered}
$$

A rotational operator is introduced by analogy with

 the translation operator \hat{D} :$$
\begin{equation*}
\hat{R}_{z} \psi(\vec{x}) \equiv \psi\left(\vec{x}^{\prime}\right)=\psi(x-y \delta \theta, y+x \delta \theta, z) \tag{48}
\end{equation*}
$$

Expansion to first order in $\delta \theta$ gives

$$
\psi\left(\vec{x}^{\prime}\right)=\psi(\vec{x})-\delta \theta\left(y \frac{\partial}{\partial x}-x \frac{\partial}{\partial y}\right) \psi(\vec{x})=\left(1+i \delta \theta \hat{L}_{z}\right) \psi(\vec{x})
$$

where \hat{L}_{z} is the z-component of the orbital angular momentum operator \hat{L} :

$$
\begin{equation*}
\hat{L}_{z}=-i\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right) \tag{49}
\end{equation*}
$$

Remember: classical mechanics

$$
\vec{L}=\vec{r} \times \vec{p} \Rightarrow L_{z}=\left(x p_{y}-y p_{x}\right)
$$

\rightarrow For the general case of the rotation about an arbitrary direction specified by a unit vector \vec{n}, \hat{L}_{Z} has to be replaced by the corresponding
projection of $\hat{L}: \hat{L} \cdot \vec{n}$, hence

$$
\begin{equation*}
\hat{R}_{n}=1+i \delta \theta(\hat{L} \cdot \vec{n}) \tag{50}
\end{equation*}
$$

Considering \hat{R}_{n} acting on a single-particle state $\psi^{\prime}(\vec{x})=H(\vec{x}) \psi(\vec{x})$ and repeating same steps as for the translation case, one gets:

$$
\begin{align*}
& {\left[\hat{R}_{n}, H\right]=0} \tag{51}\\
& {[\hat{L}, H]=0} \tag{52}
\end{align*}
$$

=> conservation of angular momentum!

This applies for a spin-0 particle moving in a central potential, i.e., in a field which does not depend on a direction, but only on the absolute distance.
\rightarrow If a particle possesses a non-zero spin, the total angular momentum is the sum of the orbital and spin angular momenta:

$$
\begin{equation*}
\hat{J}=\hat{L}+\hat{S} \tag{53}
\end{equation*}
$$

and the wavefunction is the product of the

[independent] space wavefuncion $\psi(\vec{x})$ and spin wavefunction χ :

$$
\begin{equation*}
\Psi=\psi(\overrightarrow{\vec{x}}) \chi \tag{54}
\end{equation*}
$$

For the case of spin- $1 / 2$ particles, the spin operator is represented in terms of Pauli matrices σ :

$$
\begin{equation*}
\hat{S}=\frac{1}{2} \sigma \tag{55}
\end{equation*}
$$

where σ has components :
(recall chapter 1 of these notes)

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \tag{56}\\
1 & 0
\end{array}\right), \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Let us denote now spin wavefunction for spin "up"

 state as $\chi=\alpha\left(S_{z}=1 / 2\right)$ and for spin "down" state as $\chi=\beta\left(S_{z}=-1 / 2\right)$, so that$$
\begin{equation*}
\alpha=\binom{1}{0}, \beta=\binom{0}{1} \tag{57}
\end{equation*}
$$

Both α and β satisfy the eigenvalue equations for operator (55):

$$
\hat{S}_{z} \alpha=\frac{1}{2} \alpha, \hat{S}_{z} \beta=-\frac{1}{2} \beta
$$

Analogously to (50), the rotation operator for the spin-1/2 particle generalizes to

$$
\begin{equation*}
\hat{R}_{n}=1+i \delta \theta(\hat{J} \cdot \vec{n}) \tag{58}
\end{equation*}
$$

When the rotation operator \hat{R}_{n} acts onto the wave
function $\Psi=\psi(\vec{x}) \chi$, components \hat{L} and \hat{S} of \hat{J} act independently on the corresponding wavefunctions:

$$
\hat{J} \Psi=(\hat{L}+\hat{S}) \psi(\vec{x}) \chi=[\hat{L} \psi(\vec{x})] \chi+\psi(\vec{x})[\hat{S} \chi]
$$

That means that although the total angular

 momentum has to be conserved, $[\hat{J}, H]=0$, the rotational invariance does not in general lead to the conservation of \hat{L} and \hat{S} separately:$$
[\hat{L}, H]=-[\hat{S}, H] \neq 0
$$

However, presuming that the forces can change only orientation of the spin, but not its absolute value \Rightarrow

$$
\left[H, \hat{L}^{2}\right]=\left[H, \hat{S}^{2}\right]=0
$$

\rightarrow Good quantum numbers are those which are associated with conserved observables (operators commute with the Hamiltonian)

Spin is one of the quantum numbers which characterize any particle - elementary or composite.

Spin \vec{S}_{P} of a composite particle is the total angular momentum J of its constituents in their centre-of-mass frame

- Quarks are spin-1/2 particles \Rightarrow the spin quantum number $S_{P}=J$ can be either integer or half-integer for composite particles (hadrons)
- Its projections on the z-axis $-J_{z}$ - can take any of $2 J+1$ values, from $-J$ to J with the "step" of 1 , depending on the particle's spin orientation

Figure 39: A naive illustration of possible J_{z} values for spin-1/2 and spin-1 particles

Usually, it is assumed that L and S are "good" quantum numbers together with $J=S_{P}$,
while J_{z} depends on the spin orientation.
Using "good" quantum numbers, one can refer to a particle via spectroscopic notation, like

$$
\begin{equation*}
{ }^{2 S+1} L_{J} \tag{59}
\end{equation*}
$$

- Following chemistry traditions, instead of numerical values of $L=0,1,2,3 \ldots$, letters S,P,D,F... are used correspondingly
- In this notation, the lowest-lying $(L=0)$ bound state of two particles of spin- $1 / 2$ will be ${ }^{1} S_{0}$ or ${ }^{3} S_{1}$

$$
\begin{aligned}
& L=0 \\
& { }^{1} \mathrm{~S}_{0} \\
& \uparrow \downarrow \\
& { }^{3}{ }^{3}{ }_{1}{ }^{1} \uparrow \\
& S=1 / 2-1 / 2=0 \\
& J=L+S=0 \\
& \begin{array}{c}
S=1 / 2+1 / 2=1 \\
J=L+S=1
\end{array}
\end{aligned}
$$

Figure 40: Quark-antiquark states for $L=0$
For mesons with $L \geq 1$, possible states are:

$$
{ }^{1} L_{L},{ }^{3} L_{L+1},{ }^{3} L_{L},{ }^{3} L_{L-1}
$$

$\rightarrow \quad$ Baryons are bound states of 3 quarks \Rightarrow there are two orbital angular momenta connected to the relative motion of quarks.

Figure 41: Internal orbital angular momenta of a three-quark state

- total orbital angular momentum is $L=L_{12}+L_{3}$.
- spin of a baryon $S=S_{1}+S_{2}+S_{3} \Rightarrow S=1 / 2$ or $S=3 / 2$

Possible baryon states:

$$
\begin{array}{lr}
{ }^{2} S_{I / 2},{ }^{4} S_{3 / 2} & (L=0) \\
{ }^{2} P_{I / 2},{ }^{2} P_{3 / 2},{ }^{4} P_{I / 2},{ }^{4} P_{3 / 2},{ }^{4} P_{5 / 2} & (L=1) \\
{ }^{2} L_{L+1 / 2},{ }^{2}{ }_{L} L_{-1 / 2},{ }^{4} L_{L-3 / 2},{ }^{4} L_{L-1 / 2},{ }^{4} L_{L+1 / 2},{ }^{4} L_{L+3 / 2} & (L \geq 2)
\end{array}
$$

Parity

Parity transformation is the transformation

 by reflection:$$
\begin{equation*}
\vec{x}_{i} \rightarrow \vec{x}_{i}^{\prime}=-\vec{x}_{i} \tag{60}
\end{equation*}
$$

A system is invariant under parity transformation if

$$
H\left(-\vec{x}_{1},-\vec{x}_{2}, \ldots,-\vec{x}_{n}\right)=H\left(\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{n}\right)
$$

\rightarrow Parity is not an exact symmetry: it is violated in weak interaction => absolute "handedness" CAN be defined!

A parity operator \hat{P} is defined as

$$
\begin{equation*}
\hat{P} \psi(\vec{x}, t) \equiv P_{a} \psi(-\vec{x}, t) \tag{61}
\end{equation*}
$$

where P_{a} is the parity eigenvalue. Two consecutive reflections must give back the initial system:

$$
\begin{equation*}
P^{2} \psi(\vec{x}, t)=\psi(\vec{x}, t) \tag{62}
\end{equation*}
$$

From equations (61) and (62), $P_{a}=+1,-1$

Consider a particle wavefunction which is a solution of the Dirac equation (17):

$$
\begin{equation*}
\psi_{\vec{p}}(\vec{x}, t)=u(\vec{p}) e^{i(\vec{p} \vec{x}-E t)} \tag{63}
\end{equation*}
$$

where $u(\bar{p})$ is a four-component spinor (see p. 11) independent of \bar{x}. Parity operation on this wavefunction is:

$$
\begin{equation*}
\hat{P} \psi_{\vec{p}}(\overrightarrow{\vec{x}}, t)=P_{a} u(-\vec{p}) e^{i((-\vec{p})(-\vec{x})-E t)} \tag{64}
\end{equation*}
$$

When $\vec{p}=0$ (the particle is at rest), the state ψ is an eigenstate of the parity operator:

$$
\begin{equation*}
\hat{P} \Psi_{0}(\overrightarrow{\vec{x}}, t)=P_{a} u(0) e^{-i E t}=P_{a} \psi_{0}(\overrightarrow{\vec{x}}, t) \tag{65}
\end{equation*}
$$

with eigenvalue $P_{a} . P_{a}$ is called the intrinsic parity of a particle a: intrinsic parity= parity of a particle at rest.

For a system of n particles,

$$
\hat{P} \psi\left(\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{n}, t\right) \equiv P_{1} P_{2} \ldots P_{n} \psi\left(-\vec{x}_{1},-\vec{x}_{2}, \ldots,-\vec{x}_{n}, t\right)
$$

In polar coordinates, the parity transformation is:

$$
r \rightarrow r^{\prime}=r, \theta \rightarrow \theta^{\prime}=\pi-\theta, \varphi \rightarrow \varphi^{\prime}=\pi+\varphi
$$

and a wavefunction can be written as

$$
\begin{equation*}
\psi_{n l m}(\vec{x})=R_{n l}(r) Y_{l}^{m}(\theta, \varphi) \tag{66}
\end{equation*}
$$

In Equation (66), $R_{n \prime}$ is a function of the radius only,

 and Y_{l}^{m} are spherical harmonics, which describe angular dependence.Under the parity transformation, $R_{n /}$ does not change, while spherical harmonics change as

$$
\begin{gathered}
Y_{l}^{m}(\theta, \varphi) \rightarrow Y_{l}^{m}(\pi-\theta, \pi+\varphi)=(-1)^{l} Y_{l}^{m}(\theta, \varphi) \\
\Downarrow \\
\hat{P} \Psi_{n l m}(\vec{x})=P_{a} \Psi_{n l m}(-\vec{x})=P_{a}(-1)^{l} \Psi_{n l m}(\vec{x})
\end{gathered}
$$

\rightarrow which means that a particle with a definite orbital angular momentum is also an eigenstate of parity with an eigenvalue $P_{a}(-1)^{\prime}$.

Considering only electromagnetic and strong interactions, and using the usual argumentation, one can prove that parity is conserved:

$$
[\hat{P}, H]=0
$$

Recall: the Dirac equation (17) (relativistic quantum mechanics) suggests a four-component wavefunction to describe both electrons and positrons: 2 components for electrons, 2 components for positrons. Note that in classical QM there would be no connection between parities of e^{-}and e^{+}.
\rightarrow Intrinsic parities of e^{-}and e^{+}are related, namely:

$$
P_{e^{+}} P_{e^{-}}=-1
$$

This is true for all fermions (spin-1/2 particles), i.e.,

$$
\begin{equation*}
P_{f} P_{\dot{f}}=-1 \tag{67}
\end{equation*}
$$

Experimentally this can be confirmed by studying the reaction $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma \gamma$ where initial state has zero orbital
momentum and parity of $P_{e^{-}} P_{e^{+}}$.
If the final state has relative orbital angular momentum l_{γ}, its parity is $P_{\gamma}^{2}(-1)^{l_{\gamma}}$. Since $P_{\gamma}^{2}=1$, the parity conservation law requires that

$$
P_{e^{-}} P_{e^{+}}=-1=(-1)^{l_{\gamma}}
$$

Experimental measurements of l_{γ} confirm (67).

While (67) can be proved in experiments, it is impossible to determine $P_{e^{-}}$or $P_{e^{+}}$, since these particles are created or destroyed only in pairs.

- Convention: define parities of leptons as:

$$
\begin{equation*}
P_{e^{-}}=P_{\mu^{-}}=P_{\tau^{-}} \equiv 1 \tag{68}
\end{equation*}
$$

And consequently, parities of antileptons have opposite sign.

- Since quarks and antiquarks are also produced only in pairs, their parities are defined also by convention:

$$
\begin{equation*}
P_{u}=P_{d}=P_{s}=P_{c}=P_{b}=P_{t}=1 \tag{69}
\end{equation*}
$$

with parities of antiquarks being -1 .
For a meson $\mathrm{M}=(\mathrm{ab})$, parity is then calculated as

$$
\begin{equation*}
P_{M}=P_{a} P_{\bar{b}}(-1)^{L}=(-1)^{L+1} \tag{70}
\end{equation*}
$$

since $P_{a} P_{\bar{b}}=-1$. For the low-lying mesons ($L=0$) that means parity of -1 , which is confirmed by observations.

For a baryon $\mathrm{B}=(\mathrm{abc})$, parity is given as

$$
\begin{equation*}
P_{B}=P_{a} P_{b} P_{c}(-1)^{L_{12}}(-1)^{L_{3}}=(-1)^{L_{12}+L_{3}} \tag{71}
\end{equation*}
$$

since $P_{a} P_{b} P_{c}=1$. For antibaryon $P_{\bar{B}}=-P_{B}$, similarly to the case of leptons.

For the low-lying baryons ($L_{12}=L_{3}=0$), Eq. (71) predicts positive parities, which is also confirmed by experiment.

Parity of the photon can be deduced from the classical field theory, considering the differential form
of the Gauss's law:

$$
\nabla \cdot \vec{E}(\vec{x}, t)=\frac{l}{\varepsilon_{0}} \rho(\vec{x}, t)
$$

Under a parity transformation, charge density
changes as $\rho(\vec{x}, t) \rightarrow \rho(-\vec{x}, t)$ and ∇ changes its sign, so that to keep the equation invariant, the electric field must transform as

$$
\begin{equation*}
\vec{E}(\vec{x}, t) \rightarrow-\vec{E}(-\vec{x}, t) \tag{72}
\end{equation*}
$$

On the other hand, the electromagnetic field is described by the vector and scalar potentials:

$$
\begin{equation*}
\vec{E}=-\nabla \phi-\frac{\partial \vec{A}}{\partial t} \tag{73}
\end{equation*}
$$

For the photon, only the vector part corresponds to the wavefunction:

$$
\left.\vec{A}(\vec{x}, t)=N \vec{\varepsilon}(\vec{k}) e^{i(\vec{k} \vec{k}}-E t\right)
$$

Under the parity transformation,

$$
\hat{P} \vec{A}(\vec{x}, t) \rightarrow P_{\gamma} \vec{A}(-\vec{x}, t)
$$

and from (72) it is obtained that

$$
\begin{equation*}
\vec{E}(\vec{x}, t) \rightarrow P_{\gamma} \vec{E}(-\vec{x}, t) \tag{74}
\end{equation*}
$$

Comparing (74) and (72), one concludes that parity of photon is $P_{\gamma}=-1$.

Charge conjugation

Charge conjugation replaces particles by

 their antiparticles, reversing charges and magnetic moments$\rightarrow \quad$ Charge conjugation is violated by the weak interaction => absolute sign of electric charge CAN be defined!

For the strong and electromagnetic interactions, charge conjugation is a symmetry:

$$
[\hat{C}, H]=0
$$

- It is convenient now to denote a state in a compact
notation, using Dirac's "ket" representation: $\left|\pi^{+}, \vec{p}\right\rangle$ denotes a pion having momentum \vec{p}, $\left(\left|\pi^{+}, \vec{p}\right\rangle=\psi_{\vec{p}}(\vec{x}, t)=u(\vec{p}) e^{i(\vec{p} \vec{x}-E t)}\right)$. In the general case,

$$
\begin{equation*}
\left|\pi^{+} \Psi_{1} ; \pi^{-} \Psi_{2}\right\rangle \equiv\left|\pi^{+} \Psi_{1}\right\rangle\left|\pi^{-} \Psi_{2}\right\rangle \tag{75}
\end{equation*}
$$

Next, we denote particles which have distinct antiparticles by " a " (a is the antiparticle of a and vice versa). Particles for which particle and antiparticle are the same are noted by " α ".

In this notation, we describe the action of the charge conjugation operator to particles " α " as:

$$
\begin{equation*}
\hat{C}|\alpha, \Psi\rangle=C_{\alpha}|\alpha, \Psi\rangle \tag{76}
\end{equation*}
$$

meaning that the final state acquires a phase factor C_{α}. The action of the charge conjugation operator to particles " a " is

$$
\begin{equation*}
\hat{C}|a, \Psi\rangle=|\bar{a}, \Psi\rangle \tag{77}
\end{equation*}
$$

meaning that we transformed a particle in the initial state into an antiparticle in the final state.

Since a second transformation turns antiparticles back to particles, $\hat{C}^{2}=1$, and the eigenvalue is

$$
\begin{equation*}
C_{\alpha}= \pm 1 \tag{78}
\end{equation*}
$$

For multiparticle states the transformation is:

$$
\begin{gather*}
C\left|\alpha_{1}, \alpha_{2}, \ldots, a_{1}, a_{2}, \ldots ; \Psi\right\rangle= \\
=C_{\alpha_{1}} C_{\alpha_{2}} \ldots\left|\alpha_{1}, \alpha_{2}, \ldots, \bar{a}_{1}, \bar{a}_{2}, \ldots ; \Psi\right\rangle \tag{79}
\end{gather*}
$$

- From (76) it is clear that particles $\alpha=\gamma, \pi^{0}, \ldots$ etc., are eigenstates of \hat{C} with eigenvalues $C_{\alpha}= \pm 1$.
- Other eigenstates can be constructed from particle-antiparticle pairs:

$$
\hat{C}\left|a, \Psi_{1} ; \bar{a}, \Psi_{2}\right\rangle=\left|\bar{a}, \Psi_{1} ; a \Psi_{2}\right\rangle= \pm\left|a, \Psi_{1} ; \bar{a}, \Psi_{2}\right\rangle
$$

For a state of definite orbital angular momentum,

 interchanging between particle and antiparticle reverses their relative position vector, for example:$$
\begin{equation*}
\hat{C}\left|\pi^{+} \pi^{-} ; L\right\rangle=(-1)^{L}\left|\pi^{+} \pi^{-} ; L\right\rangle \tag{80}
\end{equation*}
$$

For fermion-antifermion pairs theory predicts

$$
\begin{equation*}
\hat{C}|f f ; J, L, S\rangle=(-1)^{\left.L+S^{\mid f f} ; J, L, S\right\rangle} \tag{81}
\end{equation*}
$$

This implies that π^{0}, being a ${ }^{1} S_{0}$ state of $u \bar{u}$ and d \bar{d}, must have C-parity of 1 .

Tests of C-invariance

Prediction of $C_{\pi^{0}}=1$ can be confirmed

 experimentally by studying the decay $\pi^{0} \rightarrow \gamma$. The final state has $C=1$, and from the relations$$
\begin{gathered}
\hat{C}\left|\pi^{0}\right\rangle=C_{\pi^{0}}\left|\pi^{0}\right\rangle \\
\hat{C}|\gamma \gamma\rangle=C_{\gamma} C_{\gamma}|\gamma \gamma\rangle=|\gamma \gamma\rangle
\end{gathered}
$$

it stems that $C_{\pi^{0}}=1$.
C_{γ} can be inferred from the classical field theory:

$$
\vec{A}(\vec{x}, t) \rightarrow C_{\gamma} \vec{A}(\vec{x}, t)
$$

under the charge conjugation, and since all electric charges swap, electric field and scalar potential also change sign:

$$
\vec{E}(\vec{x}, t) \rightarrow-\vec{E}(\vec{x}, t), \phi(\vec{x}, t) \rightarrow-\phi(\vec{x}, t)
$$

which upon substitution into (73) gives $C_{\gamma}=-1$.
To check predictions of the C-invariance and of the value of C_{γ}, one can try to look for the decay

$$
\pi^{0} \rightarrow \gamma+\gamma+\gamma
$$

If both predictions are true, this mode should be forbidden:

$$
\check{C}|\gamma \gamma \gamma\rangle=\left(C_{\gamma}\right)^{3}|\gamma \gamma \gamma\rangle=-|\gamma \gamma \gamma\rangle
$$

which contradicts all previous observations.

Experimentally, this 3γ mode have never been observed.

Another confirmation of C-invariance comes from observation of η-meson decays:

$$
\begin{gathered}
\eta \rightarrow \gamma+\gamma \\
\eta \rightarrow \pi^{0}+\pi^{0}+\pi^{0} \\
\eta \rightarrow \pi^{+}+\pi^{-}+\pi^{0}
\end{gathered}
$$

They are electromagnetic decays, and first two clearly indicate that $C_{\eta}=1$. Identical charged pions momenta distribution in third confirm C-invariance.

SUMMARY

Conservation laws stem from symmetries and invariance properties. Exact symmetry (invariance of the Hamiltonian H under an operation, i.e. the operator commutes with H) <=> conservation law <=> an observable whose absolute value cannot be defined.

Invariance under spatial translation <=> momentum conservation <=> absolute spatial position undefined.

Invariance under rotation <=> angular momentum conservation <=> absolute spatial direction undefined.

Using "good" quantum numbers L, S and ${ }_{2 S}=S_{P}$, the spectroscopic notation of a particle is L_{J}.

Parity transformation is the transformation by reflection. Parity is violated in weak interaction => absolute "handedness" CAN be defined!

A particle with a definite orbital angular
momentum is an eigenstate of parity with an eigenvalue $P_{a}(-1)^{\prime}$.

Intrinsic parities of a fermion and an antifermion are related, $P_{f} P_{f}=-1$. Convention: parities of leptons/quarks are $P_{l}=P_{q}=1$. Parities of antileptons/antiquarks have opposite sign.

* For a meson $\mathrm{M}=(\mathrm{ab})$, parity is
$P_{M}=P_{a} P_{\bar{b}}(-1)^{L}=(-1)^{L+1}$. For a baryon $\mathrm{B}=(\mathrm{abc})$, parity is

Charge conjugation replaces particles by their antiparticles, reversing charges and magnetic moments. Charge conjugation is violated by the weak interaction => absolute sign of electric charge CAN be defined!

If particle=antiparticle $=\alpha\left(\alpha=\gamma, \pi^{0}, \ldots\right.$ etc. $)$, $\hat{C}|\alpha, \Psi\rangle=C_{\alpha}|\alpha, \Psi\rangle$. These particles are eigenstates of \hat{C} with eigenvalues $C_{\alpha}= \pm 1$. Other eigenstates: particle-antiparticle pairs.

> For fermion-antifermion pairs
> $\left.\hat{C}|f f ; J, L, S\rangle=(-1)^{L+S}| | f f ; J, L, S\right\rangle$.

