V. Hadron quantum numbers

Characteristics of a hadron:

1) Mass

2) Quantum numbers arising from space-time symmetries : total spin *J*, parity *P*, charge conjugation *C*. Common notation:

 $-J^{P}$ (e.g. for proton: $\frac{1}{2}^{+}$), or

- J^{PC} if a particle is also an eigenstate of *C*-parity (e.g. for π^0 : 0^{-+})

3) Internal quantum numbers: charge Q and baryon number B (always conserved),

S, C, \tilde{B} , T (conserved in e.m. and strong interactions)

How do we know which are the quantum numbers of a newly discovered hadron?

How do we know that mesons consist of a quark-antiquark pair, and baryons - of three quarks?

Particle	Mass (GeV/c ²)	Quark composition	Q	В	S	С	Ĩ
р	0.938	uud	1	1	0	0	0
n	0.940	udd	0	1	0	0	0
K-	0.494	su	-1	0	-1	0	0
D	1.869	dc	-1	0	0	-1	0
B-	5.279	bu	-1	0	0	0	-1

Some *a priori* knowledge is needed:

Considering the lightest 3 quarks (u, d, s), possible 3-quark and 2-quark states will be $(q_{i,j,k} \text{ are } u$ - or d-quarks):

	SSS	ssqi	sq _i q _j	$q_i q_j q_k$
S	-3	-2	-1	0
Q	-1	0; -1	1;0;-1	2; 1; 0; -1

	SS	sq_i	- sq _i	$q_i q_i$	$q_i q_j$
S	0	-1	1	0	0
Q	0	0; -1	1;0	0	-1;1

• Hence restrictions arise: for example, mesons with S= -1 and Q=1 are forbidden

→ Particles which fall out of above restrictions are called exotic particles (like ddus , uuuds etc.)

From observations of strong interaction processes, quantum numbers of many particles can be deduced:

	p+p	$\rightarrow p + n$	$+\pi^{+}$
Q=	2	1	1
<i>S</i> =	0	0	0
B=	2	2	0
	p + p	$\rightarrow p + p$	$+\pi^0$
Q=	<u>p+p</u> 2	$\rightarrow \mathbf{p} + \mathbf{p}$ 2	$+\pi^{0}$ 0
Q= S=	p + p 2 0	$ \rightarrow p + p \\ 2 \\ 0 $	$+\pi^{0}$ 0 0
Q= S= B=	p+p 2 0 2	$ \rightarrow p + p \\ 2 \\ 0 \\ 2 $	$+\pi^{0}$ 0 0 0

	p	+ π ¯	$\rightarrow \pi^0 + n$
Q=	1	-1	0
<i>S</i> =	0	0	0
B=	1	0	1

Observations of pions confirm these predictions, proving that pions are non-exotic particles.

Assuming that K^- is a strange meson, one can predict quantum numbers of Λ -baryon:

	$K^- + p$	$\rightarrow \pi^0$	$+\Lambda$
Q=	0	0	0
S =	-1	0	-1
B=	1	0	1

And further, for K⁺-meson:

	$\pi + p$	\rightarrow	K ⁺	$+\pi^{-}+\Lambda$
Q=	0		1	-1
<i>S</i> =	0		1	-1
B=	1		0	1

- → Before 2003: all of the more than 200 observed hadrons satisfy this kind of predictions
- → July 2003: Pentaquark uudds observed in Japan!
- → Simple quark model -- only quark-antiquark and 3-quark (or 3-antiquark) states exist -- has to be revised!

Figure 42: Schematic picture of the pentaquark production.

Pentaquark observation:

• quark composition uudds, mass 1.54 GeV, B = +1, S = +1, spin = 1/2.

Russian theorists predicted in 1998 a pentaquark state with these quantum numbers, having a mass 1.53 GeV!

Observation in Japan: 19 events. The signal has been confirmed in other experiments.

FIG. 3: a) The $MM^{\circ}_{\gamma K^+}$ spectrum for K^+K^- productions for the signal sample (solid histogram) and for events from the SC with a proton hit in the SSD (dashed histogram). b) The $MM^{\circ}_{\gamma K^-}$ spectrum for the signal sample (solid histogram) and for events from the LH₂ (dotted histogram) normalized by a fit in the region above 1.59 GeV/ c^2 .

Figure 43: Left: invariant mass distribution of the photon-proton reactions, producing K⁺ Λ (1520). Right: invariant mass distribution of the photon-neutron reactions, producing Z⁺(1540).

The reaction for producing the pentaquarks was:

 $\gamma + n \rightarrow Z^+ (1540) + K^- \rightarrow K^+ + K^- + n$

Laser beam was shot to a target made of ¹²C (n:p=1:1). A reference target of liquid hydrogen (only protons) was used. In the p-target, the following reaction occurred: $\gamma + p \rightarrow K^+ \Lambda(1520) \rightarrow K^+ + K^- + p$ (visible in the Fig. 43, left)

Figure 44: Quark diagram for pentaquark production.

Even more quantum numbers...

It is convenient to introduce some more quantum numbers, which are conserved in strong and e.m. interactions:

– Sum of all internal quantum numbers, except of Q,

hypercharge
$$Y \equiv B + S + C + \tilde{B} + T$$

– Instead of Q :

$$\mathbf{I}_3 \equiv \mathbf{Q} - \mathbf{Y}/2$$

which is to be treated as a projection of a new vector:

- Isospin

 $\mathbf{I} \equiv (\mathbf{I}_3)_{\max}$

so that I_3 takes 2I+1 values from -I to I

↔ It appears that I_3 is a good quantum number to denote up- and down- quarks, and it is convenient to use notations for particles as $I(J^P)$ or $I(J^{PC})$

	В	S	С	\tilde{B}	Т	Y	Q	I ₃	Ι
u	1/3	0	0	0	0	1/3	2/3	1/2	1/2
d	1/3	0	0	0	0	1/3	-1/3	-1/2	1/2
S	1/3	-1	0	0	0	-2/3	-1/3	0	0
с	1/3	0	1	0	0	4/3	2/3	0	0
b	1/3	0	0	-1	0	-2/3	-1/3	0	0
t	1/3	0	0	0	1	4/3	2/3	0	0

Hypercharge Y, isospin I and its projection I_3 are additive quantum numbers, so that corresponding quantum numbers for hadrons can be deduced from those of quarks:

$$Y^{a+b} = Y^{a} + Y^{b}; I^{a+b}_{3} = I^{a}_{3} + I^{b}_{3}$$

$$I^{a+b} = I^{a} + I^{b}, I^{a} + I^{b} - 1, ..., |I^{a} - I^{b}|$$

Proton and neutron both have isospin of 1/
2, and also very close masses:

$$p(938) = uud; n(940) = udd: I(J)^P = \frac{1}{2}(\frac{1}{2})^+$$

proton and neutron are said to belong to an

isospin doublet, $\binom{p}{n}_{I_3} = \binom{1/2}{-1/2}_{I_3}$

Other examples of *isospin multiplets*:

$$K^{+}(494) = us; K^{0}(498) = ds: I(J)^{P} = \frac{1}{2}(0)^{-1}$$
$$\pi^{+}(140) = ud; \pi^{-}(140) = du: I(J)^{P} = 1(0)^{-1}$$
$$\pi^{0}(135) = (uu-dd)/\sqrt{2}: I(J)^{PC} = 1(0)^{-1}$$

- → Principle of *isospin symmetry*: it is a good approximation to treat u- and d-quarks as having same masses.
- Particles with I=0 are *isosinglets* :

$$\Lambda(1116) = \text{uds}, I(J)^P = O(\frac{1}{2})^+$$

✤ By introducing isospin, we imply new criteria for non-exotic particles. S, Q and I for baryons are:

	SSS	ssqi	sq _i q _j	$q_i q_j q_k$
S	-3	-2	-1	0
Q	-1	0; -1	1;0;-1	2; 1; 0; -1
Ι	0	1/2	0; 1	3/2; 1/2

S, Q and I for mesons are:					
	SS	sq_i	sqi	$q_i \overline{q}_i$	$q_i q_j$
S	0	-1	1	0	0
Q	0	0; -1	1;0	0	-1;1
Ι	0	1/2	1/2	0; 1	0; 1

In pre-2003 observed interactions these criteria are satisfied as well, confirming the quark model.

Pentaquark uudds: S=+1, B= +1, Q= +1, Y = B + S = +2, $I_3 = Q - Y/2 = 0 => I=0.$

• On the other hand, pentaquarks are rare -we can still predict new multiplet members based on the simple quark model. Suppose we observe production of the Σ^+ baryon in a strong interaction:

	$K^- + p$	\rightarrow 1	τ	$+\Sigma^+$
Q=	0	-	-1	1
<i>S</i> =	-1		0	-1
B=	1		0	1

which then decays weakly :

$$\Sigma^+ \rightarrow \pi^+ + n$$
, OR $\Sigma^+ \rightarrow \pi^0 + p$

It follows that Σ^+ baryon quantum numbers are: B=1,

Q=1, S= -1 and hence Y=0 and I₃=1.

→ Since $I_3>0 \Rightarrow I \neq 0$, so there are more multiplet members! If a baryon has $I_3=1$, the only possibility for isospin is I=1, and we have an isospin triplet:

Indeed, all these particles have been observed:

Masses and quark composition of Σ -baryons are:

$$\Sigma^{+}(1189) = uus; \Sigma^{0}(1193) = uds; \Sigma^{-}(1197) = dds$$

It indicates that the d-quark is heavier than the u-quark under the following assumptions:

- a) Strong interactions between quarks do not depend on their flavour. Strong i.a. give a contribution M_o to the baryon mass.
- b) Electromagnetic i.a. contribute as $\delta \sum e_i e_j$,

where e_i are quark charges and δ is a constant.

The simplest attempt to calculate the mass difference of the up and down quarks:

$$M(\Sigma^{-}) = M_0 + m_s + 2m_d + \delta/3$$
$$M(\Sigma^{0}) = M_0 + m_s + m_d + m_u - \delta/3$$
$$M(\Sigma^{+}) = M_0 + m_s + 2m_u$$
$$\downarrow$$

 $m_d - m_u = [M(\Sigma) + M(\Sigma) - 2M(\Sigma)] / 3 = 3.7 \text{ MeV}$

→ NB : this is a very simple model, because under these assumptions $M(\Sigma^0) = M(\Lambda)$, however, their mass difference $M(\Sigma^0) - M(\Lambda) \approx 77$ MeV.

Generally, combining other methods:

$$2 \text{ MeV} \le m_d - m_u \le 4 \text{ MeV}$$

which is negligible compared to hadron masses (but not if compared to the estimated u and d masses themselves: $m_u = (1.5-4.5)$ MeV, $m_d = (5.0-8.5)$ MeV).

Paula Eerola

Resonances

→ Resonances are highly unstable particles which decay by the strong interaction (lifetimes about 10⁻²³ s).

Figure 45: Example of a qq system in ground and first excited states

→ If a ground state is a member of an isospin multiplet, then resonant states will form a corresponding multiplet too. → Since resonances have very short lifetimes, they can only be detected by registering their decay products:

$$\pi^{-} + p \rightarrow n + X$$
$$\downarrow A + B$$

→ Invariant mass $W = m_X$ of the resonance X is measured via energies and 3-momenta of its decay products, particles A and B. By using 4-vectors (see eqs. 10 and 11 for scalar product of two 4-vectors), W can be calculated as :

$$p_x^2 = (p_A + p_B)^2 = m_x^2 \equiv W^2$$

 $(p_A + p_B)^2 = (p_A + p_B) \cdot (p_A + p_B) = (E_A + E_B)^2 - (\dot{p}_A + \dot{p}_B)^2$

$$= E_X^2 - p_X^{\to 2} = m_X^2 = W^2$$
 (82)

Figure 46: A typical resonance peak in K⁺K⁻ invariant mass distribution

→ Resonance peak shapes are approximated by the Breit-Wigner formula:

$$N(W) = \frac{K}{(W - W_0)^2 + \Gamma^2 / 4}$$
(83)
W)

Figure 47: Breit-Wigner shape

• Mean value of the Breit-Wigner shape is the mass of the resonance: $M=W_0$

• Γ is the width of the resonance, and it is the inverse of the mean lifetime of the particle at rest: $\Gamma \equiv 1/\tau$. Internal quantum numbers of resonances are derived from their decay products. For example, if a resonance X⁰ decays to 2 pions:

$$X^0 \rightarrow \pi^+ + \pi^-$$

then $B = 0; S = C = \tilde{B} = T = 0; Q = 0$

 \Rightarrow Y=0 and I₃=0 for X⁰.

✤ To determine whether I=0 or I=1, searches for isospin multiplet partners have to be done.

Example: $\rho^{0}(769)$ and $\rho^{0}(1700)$ both decay to $\pi^{+}\pi^{-}$ pair and have isospin partners ρ^{+} and ρ^{-} :

$$\begin{array}{ccc} \pi^{\pm} + p \rightarrow p + \rho^{\pm} & \\ & \downarrow & \pi^{\pm} + \pi^{0} \end{array}$$

By measuring the angular distribution of the $\pi^+\pi^-$ pair, the <u>relative</u> orbital angular momentum of the pair, *L*, can be determined, and hence spin and parity of the resonance X⁰ are (S=0):

$$J = L; P = P_{\pi}^{2}(-1)^{L} = (-1)^{L}; C = (-1)^{L}$$

Some excited states of pion:

resonance	$I(J^{PC})$ L
ρ ⁰ (769)	1(1) 1
f ⁰ ₂ (1275)	0(2++) 2
ρ ⁰ (1700)	1(3) 3

✤ Resonances with B=0 are meson resonances, and with B=1 baryon resonances.

Many baryon resonances can be produced in pion-nucleon scattering:

Figure 48: Formation of a resonance R and its subsequent inclusive decay into a nucleon N

• Peaks in the observed total cross-section of the π^{\pm} p-reaction correspond to resonance formation - see Fig. 49.

Figure 49: Scattering of π^+ and π^- on proton

All resonances produced in pion-nucleon scattering have the same internal quantum numbers as the initial state: $p+\pi^{+-} \rightarrow R$

$$B = 1; S = C = \tilde{B} = T = 0$$

and thus Y=1 and Q= I_3 +1/2.

Possible isospins are I=1/2 or I=3/2, since for pion I=1 and for nucleon I=1/2

I=1/2
$$\Rightarrow$$
 N-resonances (N⁰, N⁺)
I=3/2 $\Rightarrow \Delta$ -resonances ($\Delta^{-}, \Delta^{0}, \Delta^{+}, \Delta^{++}$)

At Figure 49, peaks at \approx 1.2 GeV correspond to Δ^{++} and Δ^{0} resonances:

$$\pi^{+} + p \rightarrow \Delta^{++} \rightarrow \pi^{+} + p$$
$$\pi^{-} + p \rightarrow \Delta^{0} \rightarrow \pi^{-} + p$$
$$\pi^{0} + n$$

• Fits with the Breit-Wigner formula show that both Δ^{++} and Δ^{0} have approximately same mass of \approx 1232 MeV and width \approx 120 MeV.

Studies of angular distributions of the decay products show that $I(J^P) = \frac{3}{2} \left(\frac{3}{2}\right)^+$

 \clubsuit Remaining members of the multiplet are also observed: Δ^+ and Δ^-

→ There is no lighter state with these quantum numbers $\Rightarrow \Delta$ is a ground state, although a resonance.

Quark diagrams

→ Quark diagrams are convenient way of illustrating strong interaction processes. Consider an example:

 $\Delta^{++} \rightarrow p + \pi^{+}$

The only 3-quark state consistent with Δ^{++} quantum numbers is (uuu), while p=(uud) and π^+ =(ud).

Figure 50: Quark diagram of the reaction $\Delta^{++} \rightarrow p + \pi^+$

Analogously to Feinman diagrams:

arrow pointing to the right denotes a particle, and to the left – antiparticle

time flows from left to right

Allowed resonance formation process:

Figure 51: Formation and decay of Δ^{++} resonance in π^+p elastic scattering

Hypothetical exotic resonance:

Figure 52: Formation and decay of an exotic resonance Z⁺⁺ in K⁺p elastic scattering

• Quantum numbers of such a particle Z^{++} are exotic, moreover, there are no resonance peaks in the corresponding cross-section:

Figure 53: Cross-section for K⁺p scattering

SUMMARY

✤ Characteristics of a hadron: Mass; Space-time quantum numbers total spin *J*, parity *P*, charge conjugation *C*; Internal quantum numbers charge Q and baryon number B (always conserved), flavour quantum numbers *S*, *C*, \tilde{B} , *T* (conserved in e.m. and strong interactions).

The possible 3-quark and 2-quark states can be defined using the conservation rules of the quantum numbers. Other states are defined as exotic states - like pentaquarks.

❖ Quantum numbers, which are conserved in strong and e.m. interactions: *hypercharge* $Y \equiv B + S + C + \tilde{B} + T$, and $I_3 \equiv Q - Y/2$, which is the third component of *isospin I*.

I₃ is a good quantum number to denote uand d-quarks. Isospin symmetry: approximate symmetry which assumes that u- and d-quarks have the same masses.

Resonances are highly unstable particles which decay by the strong interaction (lifetimes

about 10^{-23} s). Resonances can only be detected by registering their decay products: invariant mass W = mass of the resonance = invariant mass of the decay products. Internal quantum numbers of resonances are derived from their decay products as well.

★ Resonance peak shapes are approximated by the Breit-Wigner formula which gives *N* (number of events) as the function of *W*. The value *W*=*W*₀ which gives *N*_{max} is the mass of the resonance, and Γ, the width of the resonance, is the inverse of the mean lifetime of the particle at rest: Γ ≡ 1/τ.

Quark diagrams = "Feynman-like" diagrams for strong interaction processes. Only quark lines are drawn, no gluons, no vertices.