V. Hadron quantum numbers

Characteristics of a hadron:

1) Mass
2) Quantum numbers arising from space-time symmetries : total spin J, parity P, charge conjugation C. Common notation:
$-J^{P}$ (e.g. for proton: $\frac{1}{2}^{+}$), or
$-J^{P C}$ if a particle is also an eigenstate of C-parity (e.g. for $\pi^{0}: 0^{-+}$)
3) Internal quantum numbers: charge Q and baryon number B (always conserved),
S, C, \tilde{B}, T (conserved in e.m. and strong interactions)

How do we know which are the quantum numbers of a newly discovered hadron?

How do we know that mesons consist of a quark-antiquark pair, and baryons - of three quarks?

Some a priori knowledge is needed:

Particle	Mass $\left(\mathbf{G e V} / \mathbf{c}^{2}\right)$	Quark composition	\mathbf{Q}	\mathbf{B}	\boldsymbol{S}	\boldsymbol{C}	$\tilde{\boldsymbol{B}}$
\mathbf{p}	0.938	uud	1	1	0	0	0
\mathbf{n}	0.940	udd	0	1	0	0	0
$\mathrm{~K}^{-}$	0.494	su	-1	0	-1	0	0
D^{-}	1.869	dc	-1	0	0	-1	0
$\mathrm{~B}^{-}$	5.279	bu	-1	0	0	0	-1

Considering the lightest 3 quarks (u, d, s), possible 3 -quark and 2 -quark states will be ($\mathrm{q}_{\mathrm{i}, \mathrm{j}, \mathrm{k}}$ are u - or d quarks):

	sss	ssqi			$\mathrm{sq}_{\mathrm{i}} \mathrm{q}_{\mathrm{j}}$	$\mathrm{q}_{\mathrm{i}} \mathrm{q}_{\mathrm{j}} \mathrm{q}_{\mathrm{k}}$
S	-3		-2		-1	0
Q	-1		0; -1		1;0;-1	2; 1;0;-1
	ss	sqi		$\stackrel{-}{\text { s }} \mathrm{q}_{\mathrm{i}}$	$\mathrm{q}_{\mathrm{i}} \mathrm{q}_{\mathrm{i}}$	$\mathrm{q}_{\mathrm{i}} \mathrm{q}_{\mathrm{j}}$
S	0	-1		1	0	0
Q	0	0;-1		1;0	0	-1; 1

Hence restrictions arise: for example, mesons with $S=-1$ and $\mathrm{Q}=1$ are forbidden
$\rightarrow \quad$ Particles which fall out of above restrictions are called exotic particles (like ddus , uuuds etc.)

From observations of strong interaction processes, quantum numbers of many particles can be deduced:

$\mathrm{p}+\mathrm{p} \rightarrow \mathrm{p}+\mathrm{n}+\pi^{+}$			
$\mathrm{Q}=$	2	1	1
$S=$	0	0	0
$\mathrm{~B}=$	2	2	0

$\mathrm{p}+\mathrm{p} \rightarrow \mathrm{p}+\mathrm{p}+\pi^{0}$		
$\mathrm{Q}=$	2	2
0		
$S=$	0	0
$\mathrm{~B}=$	2	2

	$\mathrm{p}+\pi^{-} \rightarrow$	
$\mathrm{Q}=$	1	-1
C	+n	
$\mathrm{S}=$	0	0
$\mathrm{~B}=$	1	0

Observations of pions confirm these predictions, proving that pions are non-exotic particles.

Assuming that K^{-}is a strange meson, one can predict quantum numbers of Λ-baryon:

$\mathrm{K}^{-}+\mathrm{p} \rightarrow$			π^{0}
$\mathrm{Q}=$	0	0	0
$S=$	-1	0	-1
$\mathrm{~B}=$	1	0	1

And further, for K^{+}-meson:

$\pi^{-}+\mathrm{p} \rightarrow$		$\mathrm{K}^{+}+\pi^{-}+\Lambda$	
$\mathrm{Q}=$	0	1	-1
$S=$	0	1	-1
$\mathrm{~B}=$	1	0	1

\rightarrow Before 2003: all of the more than 200 observed hadrons satisfy this kind of predictions
\rightarrow July 2003: Pentaquark uudds \bar{s} observed in Japan!
\rightarrow Simple quark model -- only quark-antiquark and 3-quark (or 3-antiquark) states exist -- has to be revised!

Figure 42: Schematic picture of the pentaquark production.
Pentaquark observation:
quark composition uudds, mass 1.54 GeV , $B=+1, S=+1$, spin $=1 / 2$.

Russian theorists predicted in 1998 a pentaquark state with these quantum numbers, having a mass 1.53 GeV !

Observation in Japan: 19 events. The signal has been confirmed in other experiments.

FIG. 3: a) The $M M_{T K^{+}}^{\perp}$ spectrum for $K^{+} K^{-}$productions for the signal sample (solid histogram) and for events from the SC with a proton hit in the SSD (dashed histogram), b) The $M M_{\mathrm{SK}^{-}}$ spectrum for the agnal sample (solid histogram) and for events from the LH_{2} (dotted histogram) normalized by a fit in the region atove $1.59 \mathrm{GeV} / \mathrm{c}^{2}$.

Figure 43: Left: invariant mass distribution of the photon-proton reactions, producing $\mathrm{K}^{+} \Lambda(1520)$. Right: invariant mass distribution of the photon-neutron reactions, producing $Z^{+}(1540)$.

The reaction for producing the pentaquarks was:
$\gamma+\mathrm{n} \rightarrow \mathrm{Z}^{+}(1540)+\mathrm{K}^{-} \rightarrow \mathrm{K}^{+}+\mathrm{K}^{-}+\mathrm{n}$
Laser beam was shot to a target made of ${ }^{12} \mathrm{C}$ ($n: p=1: 1$). A reference target of liquid hydrogen (only protons) was used. In the p-target, the following reaction occurred: $\gamma+\mathrm{p} \rightarrow \mathrm{K}^{+} \Lambda(1520) \rightarrow \mathrm{K}^{+}+\mathrm{K}^{-}+\mathrm{p}$ (visible in the Fig. 43, left)

Figure 44: Quark diagram for pentaquark production.

Even more quantum numbers...

It is convenient to introduce some more quantum numbers, which are conserved in strong and e.m. interactions:

- Sum of all internal quantum numbers, except of Q,

$$
\text { hypercharge } \mathrm{Y} \equiv \mathrm{~B}+S+C+\tilde{B}+T
$$

- Instead of Q :

$$
\mathrm{I}_{3} \equiv \mathrm{Q}-\mathrm{Y} / 2
$$

which is to be treated as a projection of a new vector:

- Isospin

$$
\mathrm{I} \equiv\left(\mathrm{I}_{3}\right)_{\max }
$$

so that I_{3} takes $2 \mathrm{I}+1$ values from -I to I
It appears that I_{3} is a good quantum number to denote up- and down- quarks, and it is convenient to use notations for particles as $\mathrm{I}\left(J^{P}\right)$ or $\mathrm{I}\left(J^{P C}\right)$

	B	S	C	\tilde{B}	T	Y	Q	I_{3}	I
u	$1 / 3$	0	0	0	0	$1 / 3$	$2 / 3$	$1 / 2$	$1 / 2$
d	$1 / 3$	0	0	0	0	$1 / 3$	$-1 / 3$	$-1 / 2$	$1 / 2$
s	$1 / 3$	-1	0	0	0	$-2 / 3$	$-1 / 3$	0	0
c	$1 / 3$	0	1	0	0	$4 / 3$	$2 / 3$	0	0
b	$1 / 3$	0	0	-1	0	$-2 / 3$	$-1 / 3$	0	0
t	$1 / 3$	0	0	0	1	$4 / 3$	$2 / 3$	0	0

Hypercharge Y, isospin I and its projection I_{3} are additive quantum numbers, so that corresponding quantum numbers for hadrons can be deduced from those of quarks:

$$
\begin{aligned}
& Y^{a+b}=Y^{a}+Y^{b} ; I_{3}^{a+b}=I_{3}^{a}+I_{3}^{b} \\
& I^{a+b}=I^{a}+I^{b}, I^{a}+I^{b}-1, \ldots,\left|I^{a}-I^{b}\right|
\end{aligned}
$$

Proton and neutron both have isospin of 1/ 2, and also very close masses:

$$
\mathrm{p}(938)=\text { uud } ; \mathrm{n}(940)=\text { udd }: I(J)^{P}=\frac{1}{2}\left(\frac{1}{2}\right)^{+}
$$

proton and neutron are said to belong to an

 isospin doublet, $\binom{p}{n}_{I_{3}}=\binom{1 / 2}{-1 / 2}_{I_{3}}$Other examples of isospin multiplets:
$\mathrm{K}^{+}(494)=\mathrm{us} ; \mathrm{K}^{0}(498)=\mathrm{ds}: I(J)^{P}=\frac{1}{2}(0)^{-}$
$\pi^{+}(140)=\mathrm{ud} ; \pi^{-}(140)=\mathrm{du}: I(J)^{P}=1(0)^{-}$
$\pi^{0}(135)=(\mathrm{uu}-\mathrm{dd}) / \sqrt{2}: I(J)^{P C}=1(0)^{-+}$
$\rightarrow \quad$ Principle of isospin symmetry: it is a good approximation to treat u - and d-quarks as having same masses.

Particles with $\mathrm{I}=0$ are isosinglets :

$$
\Lambda(1116)=\text { uds, } I(J)^{P}=O\left(\frac{1}{2}\right)^{+}
$$

By introducing isospin, we imply new criteria for non-exotic particles. S, Q and I for baryons are:

	sss	$\mathrm{ssq}_{\mathrm{i}}$	$\mathrm{sq}_{\mathrm{i}} \mathrm{q}_{\mathrm{j}}$	$\mathrm{q}_{\mathrm{i}} \mathrm{q}_{\mathrm{j}} \mathrm{q}_{\mathrm{k}}$
S	-3	-2	-1	0
Q	-1	$0 ;-1$	$1 ; 0 ;-1$	$2 ; 1 ; 0 ;-1$
I	0	$1 / 2$	$0 ; 1$	$3 / 2 ; 1 / 2$

S, Q and I for mesons are:

	$\overline{\mathrm{ss}}$	$\overline{\mathrm{sq}}_{\mathrm{i}}$	$\overline{\mathrm{s}} \mathrm{q}_{\mathrm{i}}$	$\mathrm{q}_{\mathrm{i}} \overline{\mathrm{q}}_{\mathrm{i}}$	$\mathrm{q}_{\mathrm{i}} \overline{\mathrm{q}}_{\mathrm{j}}$
S	0	-1	1	0	0
Q	0	$0 ;-1$	$1 ; 0$	0	$-1 ; 1$
I	0	$1 / 2$	$1 / 2$	$0 ; 1$	$0 ; 1$

In pre-2003 observed interactions these criteria are satisfied as well, confirming the quark model.
Pentaquark uudds: $S=+1, B=+1, Q=+1, Y \equiv B+S=$ $+2, \mathrm{I}_{3} \equiv \mathrm{Q}-\mathrm{Y} / 2=0 \Rightarrow \mathrm{l}=0$.

On the other hand, pentaquarks are rare -we can still predict new multiplet members based on the simple quark model. Suppose we observe production of the Σ^{+}baryon in a strong interaction:

$$
\begin{array}{lccc}
& \mathrm{K}^{-}+\mathrm{p} & \rightarrow & \pi^{-} \\
\hline \mathrm{Q}= & 0 & -\Sigma^{+} \\
\mathrm{S}= & -1 & 0 & 1 \\
\mathrm{~B}= & 1 & 0 & -1 \\
\hline
\end{array}
$$

which then decays weakly :

$$
\Sigma^{+} \rightarrow \pi^{+}+\mathrm{n}, \mathrm{OR} \Sigma^{+} \rightarrow \pi^{0}+\mathrm{p}
$$

It follows that Σ^{+}baryon quantum numbers are: $\mathrm{B}=1$,

$\mathrm{Q}=1, S=-1$ and hence $\mathrm{Y}=0$ and $\mathrm{I}_{3}=1$.

\rightarrow Since $\mathrm{I}_{3}>0 \Rightarrow \mathrm{I} \neq 0$, so there are more multiplet members! If a baryon has $\mathrm{I}_{3}=1$, the only possibility for isospin is $\mathrm{I}=1$, and we have an isospin triplet:

$$
\mathrm{S}^{+}, \mathrm{S}^{0}, \mathrm{~S}^{-}
$$

Indeed, all these particles have been observed:

$$
\begin{aligned}
& \mathrm{K}^{-}+\mathrm{p} \rightarrow \pi^{0}+\Sigma^{\Sigma^{0}} \\
& \mathrm{~K}^{-}+\mathrm{p} \rightarrow \pi^{+}+\Sigma_{\hookrightarrow}^{\Sigma^{-}} \mathrm{K}^{-}+\gamma
\end{aligned}
$$

Masses and quark composition of Σ-baryons are:
$\Sigma^{+}(1189)=$ uus $; \Sigma^{0}(1193)=$ uds ; $\Sigma^{-}(1197)=$ dds
It indicates that the d-quark is heavier than the u-quark under the following assumptions:
a) Strong interactions between quarks do not depend on their flavour. Strong i.a. give a contribution M_{o} to the baryon mass.
b) Electromagnetic i.a. contribute as $\delta \sum e_{i} e_{j}$,
where e_{i} are quark charges and δ is a constant.
The simplest attempt to calculate the mass difference of the up and down quarks:

$$
\begin{gathered}
M\left(\Sigma^{-}\right)=M_{0}+m_{s}+2 m_{d}+\delta / 3 \\
M\left(\Sigma^{0}\right)=M_{0}+m_{s}+m_{d}+m_{u}-\delta / 3 \\
M\left(\Sigma^{+}\right)=M_{0}+m_{s}+2 m_{u}
\end{gathered}
$$

$$
\Downarrow
$$

$m_{d}-m_{u}=\left[\mathrm{M}\left(\Sigma^{-}\right)+\mathrm{M}\left(\Sigma^{0}\right)-2 \mathrm{M}\left(\Sigma^{+}\right)\right] / 3=3.7 \mathrm{MeV}$
$\rightarrow \quad \mathrm{NB}$: this is a very simple model, because under these assumptions $\mathrm{M}\left(\Sigma^{0}\right)=\mathrm{M}(\Lambda)$, however, their mass difference $M\left(\Sigma^{0}\right)-M(\Lambda) \approx 77 \mathrm{MeV}$.

Generally, combining other methods:

$$
2 \mathrm{MeV} \leq \mathrm{m}_{\mathrm{d}}-\mathrm{m}_{\mathrm{u}} \leq 4 \mathrm{MeV}
$$

which is negligible compared to hadron masses (but not if compared to the estimated u and d masses themselves: $m_{u}=(1.5-4.5) \mathrm{MeV}, \mathrm{m}_{\mathrm{d}}=(5.0-8.5)$ MeV).

Resonances

\rightarrow Resonances are highly unstable particles which decay by the strong interaction (lifetimes about $10^{-23} \mathrm{~s}$).

Figure 45: Example of a qq system in ground and first excited states
\rightarrow If a ground state is a member of an isospin multiplet, then resonant states will form a corresponding multiplet too.
\rightarrow Since resonances have very short lifetimes, they can only be detected by registering their decay products:

$$
\pi^{-}+\mathrm{p} \rightarrow \mathrm{n}+\underset{\longrightarrow}{\mathrm{X}} \mathrm{~A}+\mathrm{B}
$$

$\rightarrow \quad$ Invariant mass $W=m_{X}$ of the resonance X is measured via energies and 3-momenta of its decay products, particles A and B . By using 4 -vectors (see eqs. 10 and 11 for scalar product of two 4-vectors), W can be calculated as :

$$
\begin{gather*}
p_{x}^{2}=\left(p_{A}+p_{B}\right)^{2}=m_{x}^{2} \equiv W^{2} \\
\left(p_{A}+p_{B}\right)^{2}=\left(p_{A}+p_{B}\right) \cdot\left(p_{A}+p_{B}\right)=\left(E_{A}+E_{B}\right)^{2}-\left(\vec{p}_{A}+\vec{p}_{B}\right)^{2} \\
=E_{X}^{2}-\vec{p}_{X}^{2}=m_{X}^{2}=W^{2} \tag{82}
\end{gather*}
$$

Figure 46: A typical resonance peak in $\mathrm{K}^{+} \mathrm{K}^{-}$invariant mass distribution
$\rightarrow \quad$ Resonance peak shapes are approximated by the Breit-Wigner formula:

$$
\begin{equation*}
N(W)=\frac{K}{\left(W-W_{0}\right)^{2}+\Gamma^{2} / 4} \tag{83}
\end{equation*}
$$

Figure 47: Breit-Wigner shape
Mean value of the Breit-Wigner shape is the mass of the resonance: $M=W_{0}$
Γ is the width of the resonance, and it is the inverse of the mean lifetime of the particle at rest: $\Gamma \equiv 1 / \tau$.

Internal quantum numbers of resonances are derived from their decay products. For example, if a resonance X^{0} decays to 2 pions:

$$
\mathrm{X}^{0} \rightarrow \pi^{+}+\pi^{-}
$$

then $B=0 ; S=C=\tilde{B}=T=0 ; Q=0$

$$
\Rightarrow Y=0 \text { and } I_{3}=0 \text { for } X^{0} .
$$

To determine whether $\mathrm{I}=0$ or $\mathrm{I}=1$, searches for isospin multiplet partners have to be done.

Example: $\rho^{0}(769)$ and $\rho^{0}(1700)$ both decay to $\pi^{+} \pi^{-}$ pair and have isospin partners ρ^{+}and ρ^{-}:

$$
\begin{aligned}
& \pi^{ \pm}+\mathrm{p} \rightarrow \mathrm{p}+\rho^{ \pm} \\
& \longrightarrow \pi^{ \pm}+\pi^{0}
\end{aligned}
$$

By measuring the angular distribution of the $\pi^{+} \pi^{-}$pair, the relative orbital angular momentum of the pair, L, can be determined, and hence spin and parity of the resonance X^{0} are $(S=0)$:

$$
J=L ; P=P_{\pi}^{2}(-1)^{L}=(-1)^{L} ; C=(-1)^{L}
$$

Some excited states of pion:

$$
\begin{array}{ll}
\text { resonance } & I\left(J^{P C}\right) L \\
\hline \rho^{0}(769) & 1\left(1^{--}\right) 1 \\
f_{2}^{0}(1275) & 0\left(2^{++}\right) 2 \\
\rho^{0}(1700) & 1\left(3^{--}\right) 3
\end{array}
$$

Resonances with $B=0$ are meson resonances, and with $B=1$ baryon resonances.

Many baryon resonances can be produced in pion-nucleon scattering:

Figure 48: Formation of a resonance R and its subsequent inclusive decay into a nucleon N

Peaks in the observed total cross-section of

 the $\pi^{ \pm} p$-reaction correspond to resonance formation - see Fig. 49.

Figure 49: Scattering of π^{+}and π^{-}on proton

All resonances produced in pion-nucleon scattering have the same internal quantum numbers as the initial state: $p+\pi^{+-} \rightarrow R$

$$
B=1 ; S=C=\tilde{B}=T=0
$$

and thus $\mathrm{Y}=1$ and $\mathrm{Q}=\mathrm{I}_{3}+1 / 2$.
Possible isospins are $\mathrm{I}=1 / 2$ or $\mathrm{I}=3 / 2$, since for pion $\mathrm{I}=1$ and for nucleon $\mathrm{I}=1 / 2$

$$
\begin{aligned}
& \mathrm{I}=1 / 2 \Rightarrow \mathrm{~N} \text {-resonances }\left(\mathrm{N}^{0}, \mathrm{~N}^{+}\right) \\
& \mathrm{I}=3 / 2 \Rightarrow \Delta \text {-resonances }\left(\Delta^{-}, \Delta^{0}, \Delta^{+}, \Delta^{++}\right)
\end{aligned}
$$

At Figure 49, peaks at $\approx 1.2 \mathrm{GeV}$ correspond to Δ^{++} and Δ^{0} resonances:

$$
\begin{aligned}
\pi^{+}+\mathrm{p} \rightarrow \Delta^{++} & \pi^{+}+\mathrm{p} \\
\pi^{-}+\mathrm{p} \rightarrow \Delta^{0} \rightarrow & \pi^{-}+\mathrm{p} \\
& \pi^{0}+\mathrm{n}
\end{aligned}
$$

Fits with the Breit-Wigner formula show that both Δ^{++}and Δ^{0} have approximately same mass of $\approx 1232 \mathrm{MeV}$ and width $\approx 120 \mathrm{MeV}$.

Studies of angular distributions of the decay

 products show that $I\left(J^{P}\right)=\frac{3}{2}\left(\frac{3}{2}\right)^{+}$Remaining members of the multiplet are also observed: Δ^{+}and Δ^{-}
$\rightarrow \quad$ There is no lighter state with these quantum numbers $\Rightarrow \Delta$ is a ground state, although a resonance.

Quark diagrams

$\rightarrow \quad$ Quark diagrams are convenient way of illustrating strong interaction processes. Consider an example:

$$
\Delta^{++} \rightarrow \mathrm{p}+\pi^{+}
$$

The only 3-quark state consistent with Δ^{++}quantum numbers is (uuu), while $\mathrm{p}=(\mathrm{uud})$ and $\pi^{+}=(\mathrm{ud})$.

Figure 50: Quark diagram of the reaction $\Delta^{++} \rightarrow \mathrm{p}+\pi^{+}$

Analogously to Feinman diagrams:

arrow pointing to the right denotes a particle, and to the left - antiparticle
time flows from left to right

Allowed resonance formation process:

Figure 51: Formation and decay of Δ^{++}resonance in $\pi^{+} p$ elastic scattering

Hypothetical exotic resonance:

Figure 52: Formation and decay of an exotic resonance Z^{++} in $\mathrm{K}^{+} \mathrm{p}$ elastic scattering

Quantum numbers of such a particle Z^{++} are exotic, moreover, there are no resonance peaks in the corresponding cross-section:

Figure 53: Cross-section for $\mathrm{K}^{+} \mathrm{p}$ scattering

SUMMARY

Characteristics of a hadron: Mass; Space-time quantum numbers total spin J, parity P, charge conjugation C; Internal quantum numbers charge Q and baryon number B (always conserved), flavour quantum numbers S, C, \tilde{B}, T (conserved in e.m. and strong interactions).

The possible 3-quark and 2-quark states can be defined using the conservation rules of the quantum numbers. Other states are defined as exotic states - like pentaquarks.

Quantum numbers, which are conserved in strong and e.m. interactions: hypercharge $\mathrm{Y} \equiv \mathrm{B}+$ $S+C+\tilde{B}+T$, and $I_{3} \equiv \mathrm{Q}-\mathrm{Y} / 2$, which is the third component of isospin l.
I_{3} is a good quantum number to denote u and d-quarks. Isospin symmetry: approximate symmetry which assumes that u - and d-quarks have the same masses.

Resonances are highly unstable particles which decay by the strong interaction (lifetimes
about $10^{-23} \mathrm{~s}$). Resonances can only be detected by registering their decay products: invariant mass W = mass of the resonance = invariant mass of the decay products. Internal quantum numbers of resonances are derived from their decay products as well.

Resonance peak shapes are approximated by the Breit-Wigner formula which gives N (number of events) as the function of W. The value $W=W_{0}$ which gives $N_{\text {max }}$ is the mass of the resonance, and Γ, the width of the resonance, is the inverse of the mean lifetime of the particle at rest: $\Gamma \equiv 1 / \tau$.

Quark diagrams = "Feynman-like" diagrams for strong interaction processes. Only quark lines are drawn, no gluons, no vertices.

