Particle Physics - Problems chapters 5-6

Return by Mon 14.2.2005

Chapter 5: Hadron quantum numbers

In a fixed target experiment a π^- -beam is used on a proton target and the process

$$\pi^- + p \rightarrow \Delta^0 \rightarrow \pi^0 + p$$

can occur.

a) Draw a quark diagram for this process and estimate the mean distance travelled by Δ^0 before it decays, assuming it was produced with $\gamma = E/m \approx 10$.

Using 4-vectors (and perhaps Mandelstam variables):

- b) Compute the π -beam energy required to produce the above process at the Δ^0 resonance, $m(\Delta^0)$ = 1230 MeV.
- c) Show that, if the π^0 and n are produced with an angle θ = $\pi/2$ between them, they can only obtain the energies

$$E(n) (E(\pi^0)) = E(\pi^-),$$

and

$$E(\pi^{0}) (E(n)) = m(p),$$

assuming that $m(\pi^{-}) = m(\pi^{0})$ and m(n) = m(p).

Particle Physics - Problems chapters 5-6

Return by Mon 14.2.2005

Chapter 6: Quark states and colours

Resonance Δ^{++} has a baryon number B=1, electric charge Q=2, and $S=C=\tilde{B}=T=0$. Explain why such particle can not exist unless colour charge is introduced. Could a baryon with three down-quarks exist?