Particle Physics - Problems chapters 7-9

Return by Mon 28.2.2005

Chapter 7: QCD, jets and gluons

The Coulomb potential represents a point charge. When an electrostatic potential is instead represented by a spherically symmetric charge density $\rho(r)$, the differential scattering cross section differs from the Rutherford cross section by a form factor squared, $G^2_E(q^2)$ (Chapter 7.3):

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{\mathrm{R}} \mathrm{G}_{\mathrm{E}}^{2}\left(\mathrm{q}^{2}\right)$$

where

 $G_E(q^2) = \int d^3x \rho(r) e^{i(q \cdot x)}$

Perform the angular integration of the form factor and show that

* $G_{\rm E}(q^2)$ is a function of q^2 only.

* the mean squared radius of $\rho(r)$ equals

$$\bar{r}^{2} = \int d^{3}xr^{2}\rho(r) = -6\frac{dG_{E}(q^{2})}{dq^{2}}\Big|_{q^{2} = 0}$$

* ("Bonus" Problem - not mandatory but you can get an extra point)

Explain the effect on the differential cross section (wrt the scattering angle θ) when a point charge (infinitely narrow distribution) is replaced by a charge density $\rho(r)$, represented by a Gaussian (normal) distribution.

Note that the Fourier transform of a "narrow" Gaussian becomes a "wide" Gaussian distribution (and vice versa). Both charge distributions are normalized to 1.

Particle Physics - Problems chapters 7-9 Return by Mon 28.2.2005

Chapter 8: Weak interactions: W and Z bosons

In the lowest order weak interactions, decays proceed via single W-boson exchange. Explain why the decay $\Sigma^- \rightarrow n + e^- + \overline{\nu}_e$ have been observed, while $\Sigma^+ \rightarrow n + e^+ + \nu_e^-$ - never. Σ^- has quark contents of (dds), and Σ^+ - (uus). Plot the quark diagram for the Σ^- decay.

Particle Physics - Problems chapters 7-9 Return by Mon 28.2.2005

Chapter 9: Weak interactions: Electroweak unification

Which of the following processes are allowed in electromagnetic, and which - in weak interactions? Consider only single boson exchange processes.

1. $\Sigma^- \rightarrow \pi^- + n$

2. $\Sigma^0 \rightarrow \Lambda + \gamma$

3. $B^+ \rightarrow K^+ + e^+ + e^-$

4. $K^+ \rightarrow \pi^0 + \mu^+ + \nu_\mu$