
Introduction to Programming and Computing for
Scientists

Oxana Smirnova

Lund University

Lecture 6

Oxana Smirnova (Lund University) Programming for Scientists Lecture 6 1 / 32

Knowing programming languages is not enough

• Most software/IT projects fail, even with excellent programmers

Oxana Smirnova (Lund University) Programming for Scientists

A
u

th
o

r
u

n
kn

o
w

n

Lecture 6 2 / 32

From programming to software development
• Software development is many things:

Oxana Smirnova (Lund University) Programming for Scientists

A process of
developing and

supporting software

A
profession

A set of skills

A life style
and a

religion

Lecture 6 3 / 32

Software development as a process: simplified picture

Oxana Smirnova (Lund University) Programming for Scientists

Requirement collection

understanding of the
problem

Design and planning

mix of engineering
and art

Programming

Testing and bug-fixing

there is no code without
bugs

Documenting

often ignored

Programming

Lecture 6 4 / 32

Different software development methodologies
• Waterfall model: a straightforward

sequential approach
• Agile development: too many bugs

to do long-term planning

Oxana Smirnova (Lund University) Programming for Scientists

Requirements

Design

Implementation

Verification

Maintenance

• There are also rapid prototyping, incremental development, various
combinations of methodologies, and even cowboy coding (every student
does it)

Lecture 6 5 / 32

Most programs implement an algorithm
• Algorithm is a well-defined

sequence of actions to be performed

• Starts from initial state

• May need initial input

• Proceeds through a sequence of
instructions in a strict order

• May include conditional
statements

• Terminates with a final state

• Algorithms can be expressed
through:

• Human language (ambiguous)

• Pseudocode (no standard)

• Flowcharts

• Other charts, tables,
programming languages

• Flowchart as a graphical
representation of an algorithm

• Warning: complex flowcharts
may lead to “spaghetti code”
with many redirections

Oxana Smirnova (Lund University) Programming for Scientists

Lamp does
not work

Is it
plugged

off?

Is the
bulb

burned?

Buy a new
lamp

Plug in the
lamp

Replace the
bulb

yes

yes

no

no

Look at the
bulb

Lecture 6 6 / 32

Flowchart symbols overview
• Can be found in any presentation-making software

• Often used to describe not only algorithms, but also workflows

Oxana Smirnova (Lund University) Programming for Scientists

Start and end

Flow arrows

Process

Conditional

Data

Document

Disk

Tape

Lecture 6 7 / 32

Unified Modelling Language (UML)
• A standard way to visualize complex processes or systems

• You may never need to use it, unless you’ll become a professional developer

• Designed for object-oriented methods

• Uses diagrams to describe systems:
• Structure diagrams show objects and their relations
• Behaviour diagrams show activities and state changes

• There are many different “styles” of diagrams, but each has well-defined “language”

Oxana Smirnova (Lund University) Programming for Scientists

G
ra

p
h

 b
y

IB
M

G
ra

p
h

 f
ro

m
 W

ik
im

ed
ia

Lecture 6 8 / 32

A bit of legalism
• Even if you are not a professional programmer, the code that you write is an

Intellectual Property

• Much like scientific publications, music, photos etc

• Computer programs and even their design are protected by copyright

• Different laws exist in different countries

• In Swedish universities, it is your Intellectual Property

• In other countries and companies, your employer may own the code – check
the contract

• You should remember to mention code written by you in your CV

• What does ownership give you:

• Right to authorise copying (including copying for usage)

• Right to authorise modifications

• Right to authorise distribution

Oxana Smirnova (Lund University) Programming for Scientists Lecture 6 9 / 32

Software licenses
• Software license is a legal instrument that defines rules of software usage,

modification and distribution

• Different licenses allow different freedoms

• Proprietary (end-user license agreements, EULA): least permissive

• Open Source: some limitations, several combinations exist

• Public domain: basically, no license, everything is permitted

• Scientific software has no common approach regarding licenses

• Large pieces of code are in a “grey zone”, having no explicit license and used
without clear rules

• We like Open Source licenses because they allow free code usage, modification
and sharing

• A number of different Open Source licenses exist (see next slide)

• Open Source software can still be sold (if anyone wants to pay)

• Software developed using public funding (as in universities) should normally
have an Open Source license

• Note: documents and data also have licenses! We like Open Access ones.

Oxana Smirnova (Lund University) Programming for Scientists Lecture 6 10 / 32

Some Open Source licenses
• GPL, Apache and BSD are the most commonly used ones

• GPL is “contagious”

• It is up to the code owner to decide what license to use

Oxana Smirnova (Lund University) Programming for Scientists

G
ra

p
h

 f
ro

m
 s

ta
ck

o
ve

rf
lo

w
.c

o
m

 ,
o

ri
g

in
a

l s
p

el
lin

g

GNU

BSD

Lecture 6 11 / 32

Practical useof licenses
• Licenses protect (or not) both the developers and the software

• If everybody is allowed to change the code, the original author can not
guarantee its quality or features

• If nobody is allowed to change it, the author will be held responsible for all
wrongdoings

• In practice, a good balance is needed: changes should be allowed under
certain conditions

• License is implemented as a piece of text, distributed together with the software

• Some add it to every file

• If a software package has many files, license can be a separate file

Oxana Smirnova (Lund University) Programming for Scientists Lecture 6 12 / 32

When you’re not the lone developer
• When your code grows big, it is always good to split it into separate files

• A program is one algorithm (rarely a few)

• Software is a collection of various algorithms that work together

• Large softwares consist of many files and are usually developed by several
people

Oxana Smirnova (Lund University) Programming for Scientists

How to ensure
synchronisation?

How to avoid clashes?

How to handle
ownership and licenses?

Use revision control
systems

Make an agreement
with colleagues

Lecture 6 13 / 32

Example of a complex software with many authors

Oxana Smirnova (Lund University) Programming for Scientists Lecture 6 14 / 32

Revision control systems
• Revision in our context stands for an updated piece of code (or several pieces)

• Since several developers may update different pieces of code simultaneously, a
system is needed to keep everything synchronised and to avoid clashes

• Sometimes bad updates need to be reverted, too – previous revisions need to be
kept

• When a software is ready to be used, it has to be tagged, for reference

• A tag is basically a snapshot of all the code, labelled by a number or a special
string

• Tags are a good reference point for testing

• When tested and proven to work as expected, a tag is released as a new
software version

• Therefore, the main functionalities of such common development systems are:

• Reference software repository (“master copy”)

• Accepting changes (commits) from different developers

• Revision history (“backup” of files)

• Versioning

Oxana Smirnova (Lund University) Programming for Scientists Lecture 6 15 / 32

Few words on software versions
• Software changes very often, so it is important to know what exact code was

used

• Primarily, to make results reproducible

• But also to simplify maintenance, debugging, user support etc

• Most code developed by students has no versions – very bad practice!

• Some examples of versions:

• Operating systems: Windows 8.1, iOS 8.0, Ubuntu 14.10 “Utopic Unicorn”,
Android 4.4 “KitKat”, Fedora 20 “Heisenbug”

• Software: ROOT v6.02/02, gcc 4.9.2, Photoshop CS5.5, Office 2013, Linux
kernel 3.16

• In the Linux world, most common versioning scheme is MM.mm.bb

• MM – major version with massive changes; usually backwards incompatible
with MM-1

• mm – minor version with some new functionality; versions MM.mm and
MM.mm-1 are usually compatible

• bb – bugfix version, always compatible with MM.mm.bb-1

Oxana Smirnova (Lund University) Programming for Scientists Lecture 6 16 / 32

General principles of work with revision control systems
• There is a code repository, from which software releases are made

• Repository can be centralised or distributed

• Each developer makes – checkout – an own working copy of the repository
• Many systems allow to check out only a part of the entire repository

• After doing local code changes, the developer uploads – commit – the change to
the repository
• In most systems, only the differences are communicated to the repository
• It is a good practice to commit often, avoid mega-commits

• If the system notices that the code has changed meanwhile, it will try to merge
the changes, if they were committed to different parts of the code
• Beware! The changes may still turn out to be incompatible, no system is

clever enough to figure it
• If automatic merging is impossible, a conflict will be reported, and commit

will fail

• Commits can be reverted to any previous revision if it turns out they caused
troubles

• Release manager can decide which commits should be accepted for the software
release

Oxana Smirnova (Lund University) Programming for Scientists Lecture 6 17 / 32

Traditional approach: central code repository
• A straightforward approach is to have one central repository

• A trunk would contain the main reference code, and branches would contain
specialised/private developments

Oxana Smirnova (Lund University) Programming for Scientists

Plus

•Easy to control and manage

•Easy to prevent conflicts

•Each developer makes a
checkout of only the code they
need

Minus

•No general agreement how to
deal with branches

•Single point of failure if the
server goes down (or is slow)

O
ld

 A
R

C
 s

o
ft

w
a

re
 r

ep
o

si
to

ry

Lecture 6 18 / 32

Modern approach: distributed repository
• Every developer has a local copy of the entire repository

• Can commit off-line and synchronise later

• Allows for frequent commits, hence better revision control

Oxana Smirnova (Lund University) Programming for Scientists

Plus

• Distributed
development

• Very fast

• Easy and quick to
branch and merge
code

Minus

• Have to keep entire
repository locally

• Can not lock files

• Non-trivial access
control

R
O

O
T

so
ft

w
a

re
 r

ep
o

si
to

ry

Lecture 6 19 / 32

Most popular revision control systems
• Subversion (SVN): a centralised

system

• One of the most commonly used
systems

• Release 1.0.0 in 2004

• Open Source (Apache)

• Branches retain no knowledge
of the trunk

• Allows authorisation per
directory

• Well documented, O’Reilly book
is online for free:
http://svnbook.red-bean.com/

• Git: a distributed system

• Developed by Linus Torvalds in
2005 when the other system he
was using fell victim to copyright
battles

• Open Source (GPL/LGPL)

• Each local copy is a complete
repository, with all the revision
history and such

• Light-weight easy to merge
branches

• No own access control

• Git book also exists: http://git-
scm.com/book

Oxana Smirnova (Lund University) Programming for Scientists Lecture 6 20 / 32

http://svnbook.red-bean.com/
http://git-scm.com/book

Integrated Development Environment (IDE)
• For non-professional developers, a good editor and configure; make is

enough to write and build software

• Warning: avoid doing configure; make in your working copy! They
may create many files that you don’t want to commit!

• For professionals, special IDEs exist, that include:

• Context-aware software editor

• Build automation tools

• Some include compilers and interpreters

• Debugging tools

• Some integrate with revision control systems

• Very many IDEs exist for C++

• There are no good IDEs for Linux (they are not really needed there)

• Geany is actually a light-weight IDE

• Some even use Emacs editor as an IDE

• Eclipse is one of the most powerful and complicated

• On Windows, Microsoft Visual Studio is the best

Oxana Smirnova (Lund University) Programming for Scientists Lecture 6 21 / 32

Eclipse screenshot

Oxana Smirnova (Lund University) Programming for Scientists Lecture 6 22 / 32

There is no code without bugs
• With an Open Source code, everybody can find a bug… or many…

• So we need a system where bugs can be reported and followed-up: a bug
tracking system

• Such system is essentially a database where every authorised person can register
a discovered defect

• Typical information to be entered:

• Summary of the problem and ways to reproduce it

• Software version that has the problem

• Operating system version where the problem occurs

• Severity of the problem

• Bugs have life cycle: from being new, to assigned, to fixed

• Different systems have different such states

• States are changed by administrators in charge of bug tracking

• E-mail notifications are sent to all the involved parties (reporters,
developers etc) on each state change

• When you find a bug, please always report it!

Oxana Smirnova (Lund University) Programming for Scientists Lecture 6 23 / 32

Bug tracking systems
• Many bug tracking systems exist

• Some are stand-alone
• Some are integrated with revision control

systems
• Some are even distributed

• Some are integrated with IDEs
• Some are a part of larger issue-tracking

systems

Oxana Smirnova (Lund University) Programming for Scientists

• Bugzilla (standalone),
http://www.bugzilla.org/

• JIRA (project management tool),
https://www.atlassian.com/software/jira

• Savannah (development service),
http://savannah.gnu.org/

• Trac (integrated with Wiki),
http://trac.edgewall.org/

• Redmine (project management),
http://www.redmine.org/

Some commonly used bug trackers:

Sc
re

en
sh

o
t

o
f

th
e
N
o
rd
u
G
ri
d
’s

B
u

g
zi

lla

Lecture 6 24 / 32

http://www.bugzilla.org/
https://www.atlassian.com/software/jira
http://savannah.gnu.org/
http://trac.edgewall.org/
http://www.redmine.org/

Software development hosting services
• If you start a new software project and don’t want to set up an own code

repository, Wiki, bug tracker etc, several free Open Source hosting services exist

• Some other hosting services: RubyForge, Tigris.org, BountySource, Launchpad,
BerliOS, JavaForge, GNU Savannah, Gitorious

Oxana Smirnova (Lund University) Programming for Scientists

Sourceforge, http://sourceforge.net/: a veteran
service (launched in 1999), interfaces to SVN, Git
and other revision control systems

GitHub, https://github.com/: the newest and largest
IT-project hosting service (started in 2008), based on
Git (obviously); free for Open Source projects

Google Code, http://code.google.com/: started in
2005, offers Git, SVN and Mercurial revision control
systems

Lecture 6 25 / 32

http://sourceforge.net/
https://github.com/
http://code.google.com/

Yet another kind of language: markup languages
• Markup languages add special tags to plain text

• These tags will be processed and interpreted by software
• Tags must be distinguishable from normal text

• An example of a markup language at work you see every day in Web pages
• Did you ever try to click “show source code” on a Web page?
• If yes, you probably noted <!DOCTYPE html in the very beginning
• HTML stands for Hypertext Markup Language

• Was developed at CERN, inspired by an earlier SGML

Oxana Smirnova (Lund University) Programming for Scientists Lecture 6 26 / 32

Usage of markup languages for text processing; LaTeX
• Once your results are ready, it is time to publish!

• Or to write a project report

• Softwares that make your papers looking good are called word processors

• All good word processors cost money (like Microsoft Office)

• All free word processors are desperately bad (like LibreOffice)

• What do word processors do under the hood?

• They make use of different markup languages to add special tags to your
text and figures, and convert them to a visually pleasant layout (hopefully)

• LaTeX is a markup language for word processing, with which you add the tags
yourself, and LaTeX system converts it to a publishable material

Oxana Smirnova (Lund University) Programming for Scientists

Plus

• It is free

• It supports most complex mathematics

• It is extensible

• It is accepted by all publishers

Minus

• You don’t see the result “live”

• Tables and figures are very difficult to pin into
place

• No way to track changes (unless you use a
revision control system)

Lecture 6 27 / 32

So what is LaTeX?
• Actually, the language itself is called TeX

• TeX was released in 1978, designed by Donald Knuth in Stanford

• The goal was to create a complete typesetting system that would produce
identical results on any computer

• Hence the markup language: plain text can be transferred everywhere

• Stable since 1989, when support for non-English languages was added to
TeX 3.0

• Software version is currently 3.14159265 (guess the next version….)

• Public domain software

• Some basic TeX rules:

• TeX tags (commands) start with a backslash \ and use curly brackets {} to
group command input

• Simple mathematics is included in $$

• $\sqrt{2}$ results in

• Paragraphs are separated by blank lines

• Comments start with %

Oxana Smirnova (Lund University) Programming for Scientists Lecture 6 28 / 32

From TeX to LaTeX
• Plain TeX uses elementary instructions and is rather difficult to learn and use for

complex documents

• Leslie Lamport developed LaTeX in 1984 using TeX, to provide a higher-level
language
• Added pre-defined commands for sections, cross-references, bibliography

etc
• Easy to use with non-Latin scripts
• Current version: LaTeX2ε (since 1994)

Oxana Smirnova (Lund University) Programming for Scientists

LaTeX example produced with the help of https://www.writelatex.com

Lecture 6 29 / 32

https://www.writelatex.com/

More LaTeX features
• Can do almost all imaginable formatting, section numbering, headers and

footers, lists etc

• Note: (La)TeX uses own fonts, not system ones

• This ensures identical results everywhere

Oxana Smirnova (Lund University) Programming for Scientists

Is very good with equations \begin{equation}

Can include figures \begin{figure}

\includegraphics{cat.jpg}

Can create tables \begin{table}

\begin{tabular}

Handles cross references \label{sec:intro}

\ref{sec:intro}

Handles bibliography \begin{thebibliography}

\bibitem{mybook} …

\cite{mybook}

Can include other files \input{section2.tex}

\include{appendix.tex}

Can auto-generate table of contents etc \tableofcontents

Can even do nice slides \documentclass{beamer}

Lecture 6 30 / 32

Steps to create a LaTeX document
• Writing a LaTeX document resembles software development:

• You can use Linux command line, any of Windows IDEs (TeXnicCenter is good), or
one of the many online LaTeX systems

• There is also software called LyX, which is based on LaTeX and produces “live”
visual result

• Beware that LyX files are a heavy extension of LaTeX, and can not be used
without LyX (not portable!)

Oxana Smirnova (Lund University) Programming for Scientists

Edit the text files and
the bibliography

Pre-process the files
Create the final

publishable document

Lecture 6 31 / 32

Summary
• Software development is a profession and requires professional tools

• Open Source code drives the technological and scientific progress

• “Language” can mean many things: a programming language, a visual modelling
language, a markup language…

• …and actually many other languages

Oxana Smirnova (Lund University) Programming for Scientists Lecture 6 32 / 32

