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Knowing programming languages is not enough

• Most software/IT projects fail, even with excellent programmers 
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From programming to software development
• Software development is many things:
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A process of 
developing and 

supporting software

A 
profession

A set of skills

A life style 
and a 

religion
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Software development as a process: simplified picture
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Different software development methodologies
• Waterfall model: a straightforward 

sequential approach
• Agile development: too many bugs 

to do long-term planning
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Design

Implementation

Verification

Maintenance

• There are also rapid prototyping, incremental development, various 
combinations of methodologies, and even cowboy coding (every student 
does it) 
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Most programs implement an algorithm
• Algorithm is a well-defined 

sequence of actions to be performed

• Starts from initial state

• May need initial input

• Proceeds through a sequence of 
instructions in a strict order

• May include conditional 
statements

• Terminates with a final state

• Algorithms can be expressed 
through:

• Human language (ambiguous)

• Pseudocode (no standard)

• Flowcharts

• Other charts, tables, 
programming languages

• Flowchart as a graphical 
representation of an algorithm

• Warning: complex flowcharts 
may lead to “spaghetti code” 
with many redirections
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Flowchart symbols overview
• Can be found in any presentation-making software

• Often used to describe not only algorithms, but also workflows
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Unified Modelling Language (UML)
• A standard way to visualize complex processes or systems

• You may never need to use it, unless you’ll become a professional developer

• Designed for object-oriented methods

• Uses diagrams to describe systems:
• Structure diagrams show objects and their relations
• Behaviour diagrams show activities and state  changes

• There are many different “styles” of diagrams, but each has well-defined “language”
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A bit of legalism
• Even if you are not a professional programmer, the code that you write is an 

Intellectual Property

• Much like scientific publications, music, photos etc

• Computer programs and even their design are protected by copyright

• Different laws exist in different countries

• In Swedish universities, it is your Intellectual Property

• In other countries and companies, your employer may own the code – check 
the contract

• You should remember to mention code written by you in your CV

• What does ownership give you:

• Right to authorise copying (including copying for usage)

• Right to authorise modifications

• Right to authorise distribution 
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Software licenses
• Software license is a legal instrument that defines rules of software usage, 

modification and distribution

• Different licenses allow different freedoms

• Proprietary (end-user license agreements, EULA): least permissive

• Open Source: some limitations, several combinations exist

• Public domain: basically, no license, everything is permitted

• Scientific software has no common approach regarding licenses

• Large pieces of code are in a “grey zone”, having no explicit license and used 
without clear rules

• We like Open Source licenses because they allow free code usage, modification 
and sharing

• A number of different Open Source licenses exist (see next slide)

• Open Source software can still be sold (if anyone wants to pay)

• Software developed using public funding (as in universities) should normally 
have an Open Source license

• Note: documents and data also have licenses! We like Open Access ones.
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Some Open Source licenses
• GPL, Apache and BSD are the most commonly used ones

• GPL is “contagious”

• It is up to the code owner to decide what license to use

Oxana Smirnova (Lund University) Programming for Scientists

G
ra

p
h

 f
ro

m
 s

ta
ck

o
ve

rf
lo

w
.c

o
m

 , 
o

ri
g

in
a

l s
p

el
lin

g

GNU

BSD

Lecture 6 11 / 32 



Practical useof licenses
• Licenses protect (or not) both the developers and the software

• If everybody is allowed to change the code, the original author can not 
guarantee its quality or features

• If nobody is allowed to change it, the author will be held responsible for all 
wrongdoings

• In practice, a good balance is needed: changes should be allowed under 
certain conditions

• License is implemented as a piece of text, distributed together with the software

• Some add it to every file

• If a software package has many files, license can be a separate file

Oxana Smirnova (Lund University) Programming for Scientists Lecture 6 12 / 32 



When you’re not the lone developer
• When your code grows big, it is always good to split it into separate files

• A program is one algorithm (rarely a few)

• Software is a collection of various algorithms that work together

• Large softwares consist of many files and are usually developed by several 
people

Oxana Smirnova (Lund University) Programming for Scientists

How to ensure 
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How to avoid clashes?
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Use revision control 
systems

Make an agreement 
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Example of a complex software with many authors
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Revision control systems
• Revision in our context stands for an updated piece of code (or several pieces)

• Since several developers may update different pieces of code simultaneously, a 
system is needed to keep everything synchronised and to avoid clashes

• Sometimes bad updates need to be reverted, too – previous revisions need to be 
kept

• When a software is ready to be used, it has to be tagged, for reference

• A tag is basically a snapshot of all the code, labelled by a number or a special 
string

• Tags are a good reference point for testing

• When tested and proven to work as expected, a tag is released as a new 
software version

• Therefore, the main functionalities of such common development systems are:

• Reference software repository (“master copy”)

• Accepting changes (commits) from different developers

• Revision history (“backup” of files)

• Versioning
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Few words on software versions
• Software changes very often, so it is important to know what exact code was 

used

• Primarily, to make results reproducible

• But also to simplify maintenance, debugging, user support etc

• Most code developed by students has no versions – very bad practice!

• Some examples of versions:

• Operating systems: Windows 8.1, iOS 8.0, Ubuntu 14.10 “Utopic Unicorn”, 
Android 4.4 “KitKat”, Fedora 20 “Heisenbug”

• Software: ROOT v6.02/02, gcc 4.9.2, Photoshop CS5.5, Office 2013, Linux 
kernel 3.16

• In the Linux world, most common versioning scheme is MM.mm.bb

• MM – major version with massive changes; usually backwards incompatible 
with MM-1

• mm – minor version with some new functionality; versions MM.mm and 
MM.mm-1 are usually compatible

• bb – bugfix version, always compatible with MM.mm.bb-1
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General principles of work with revision control systems
• There is a code repository, from which software releases are made

• Repository can be centralised or distributed

• Each developer makes – checkout – an own working copy of the repository
• Many systems allow to check out only a part of the entire repository

• After doing local code changes, the developer uploads – commit – the change to 
the repository
• In most systems, only the differences are communicated to the repository
• It is a good practice to commit often, avoid mega-commits

• If the system notices that the code has changed meanwhile, it will try to merge 
the changes, if they were committed to different parts of the code
• Beware! The changes may still turn out to be incompatible, no system is 

clever enough to figure it
• If automatic merging is impossible, a conflict will be reported, and commit 

will fail

• Commits can be reverted to any previous revision if it turns out they caused 
troubles

• Release manager can decide which commits should be accepted for the software 
release
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Traditional approach: central code repository
• A straightforward approach is to have one central repository

• A trunk would contain the main reference code, and branches would contain 
specialised/private developments
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Modern approach: distributed repository
• Every developer has a local copy of the entire repository

• Can commit off-line and synchronise later

• Allows for frequent commits, hence better revision control
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Most popular revision control systems
• Subversion (SVN): a centralised 

system

• One of the most commonly used 
systems

• Release 1.0.0 in 2004

• Open Source (Apache)

• Branches retain no knowledge 
of the trunk

• Allows authorisation per 
directory

• Well documented, O’Reilly book 
is online for free: 
http://svnbook.red-bean.com/

• Git: a distributed system

• Developed by Linus Torvalds in 
2005 when the other system he 
was using fell victim to copyright 
battles

• Open Source (GPL/LGPL)

• Each local copy is a complete 
repository, with all the revision 
history and such

• Light-weight easy to merge 
branches

• No own access control

• Git book also exists: http://git-
scm.com/book
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Integrated Development Environment (IDE)
• For non-professional developers, a good editor and configure; make is 

enough to write and build software

• Warning: avoid doing configure; make in your working copy! They 
may create many files that you don’t want to commit!

• For professionals, special IDEs exist, that include:

• Context-aware software editor

• Build automation tools

• Some include compilers and interpreters

• Debugging tools

• Some integrate with revision control systems

• Very many IDEs exist for C++

• There are no good IDEs for Linux (they are not really needed there)

• Geany is actually a light-weight IDE

• Some even use Emacs editor as an IDE

• Eclipse is one of the most powerful and complicated

• On Windows, Microsoft Visual Studio is the best
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Eclipse screenshot
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There is no code without bugs
• With an Open Source code, everybody can find a bug… or many…

• So we need a system where bugs can be reported and followed-up: a bug 
tracking system

• Such system is essentially a database where every authorised person can register 
a discovered defect

• Typical information to be entered:

• Summary of the problem and ways to reproduce it

• Software version that has the problem

• Operating system version where the problem occurs

• Severity of the problem

• Bugs have life cycle: from being new, to assigned, to fixed

• Different systems have different such states

• States are changed by administrators in charge of bug tracking

• E-mail notifications are sent to all the involved parties (reporters, 
developers etc) on each state change

• When you find a bug, please always report it!
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Bug tracking systems
• Many bug tracking systems exist

• Some are stand-alone
• Some are integrated with revision control 

systems
• Some are even distributed

• Some are integrated with IDEs
• Some are a part of larger issue-tracking 

systems
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• Bugzilla (standalone),
http://www.bugzilla.org/

• JIRA (project management tool),
https://www.atlassian.com/software/jira

• Savannah (development service),
http://savannah.gnu.org/

• Trac (integrated with Wiki),
http://trac.edgewall.org/

• Redmine (project management),
http://www.redmine.org/

Some commonly used bug trackers:
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Software development hosting services
• If you start a new software project and don’t want to set up an own code 

repository, Wiki, bug tracker etc, several free Open Source hosting services exist

• Some other hosting services: RubyForge, Tigris.org, BountySource, Launchpad, 
BerliOS, JavaForge, GNU Savannah, Gitorious
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Sourceforge, http://sourceforge.net/: a veteran 
service (launched in 1999), interfaces to SVN, Git 
and other revision control systems

GitHub, https://github.com/: the newest and largest 
IT-project hosting service (started in 2008), based on 
Git (obviously); free for Open Source projects

Google Code, http://code.google.com/: started in 
2005, offers Git, SVN and Mercurial revision control 
systems
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Yet another kind of language: markup languages
• Markup languages add special tags to plain text

• These tags will be processed and interpreted by software
• Tags must be distinguishable from normal text

• An example of a markup language at work you see every day in Web pages
• Did you ever try to click “show source code” on a Web page?
• If yes, you probably noted <!DOCTYPE html in the very beginning
• HTML stands for Hypertext Markup Language

• Was developed at CERN, inspired by an earlier SGML
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Usage of markup languages for text processing; LaTeX
• Once your results are ready, it is time to publish!

• Or to write a project report

• Softwares that make your papers looking good are called word processors

• All good word processors cost money (like Microsoft Office)

• All free word processors are desperately bad (like LibreOffice)

• What do word processors do under the hood?

• They make use of different markup languages to add special tags to your 
text and figures, and convert them to a visually pleasant layout (hopefully)

• LaTeX is a markup language for word processing, with which you add the tags 
yourself, and LaTeX system converts it to a publishable material 
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Plus

• It is free

• It supports most complex mathematics

• It is extensible

• It is accepted by all publishers

Minus

• You don’t see the result “live”

• Tables and figures are very difficult to pin into 
place

• No way to track changes (unless you use a 
revision control system)
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So what is LaTeX?
• Actually, the language itself is called TeX

• TeX was released in 1978, designed by Donald Knuth in Stanford

• The goal was to create a complete typesetting system that would produce 
identical results on any computer

• Hence the markup language: plain text can be transferred everywhere

• Stable since 1989, when support for non-English languages was added to 
TeX 3.0

• Software version is currently 3.14159265 (guess the next version….)

• Public domain software

• Some basic TeX rules:

• TeX tags (commands) start with a backslash \ and use curly brackets {} to 
group command input

• Simple mathematics is included in $$

• $\sqrt{2}$ results in 

• Paragraphs are separated by blank lines

• Comments start with %

Oxana Smirnova (Lund University) Programming for Scientists Lecture 6 28 / 32 



From TeX to LaTeX
• Plain TeX uses elementary instructions and is rather difficult to learn and use for 

complex documents

• Leslie Lamport developed LaTeX in 1984 using TeX, to provide a higher-level 
language
• Added pre-defined commands for sections,  cross-references, bibliography 

etc
• Easy to use with non-Latin scripts
• Current version: LaTeX2ε (since 1994)
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LaTeX example produced with the help of https://www.writelatex.com
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More LaTeX features
• Can do almost all imaginable formatting, section numbering, headers and 

footers, lists etc

• Note: (La)TeX uses own fonts, not system ones

• This ensures identical results everywhere
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Is very good with equations \begin{equation}

Can include figures \begin{figure}

\includegraphics{cat.jpg}

Can create tables \begin{table}

\begin{tabular}

Handles cross references \label{sec:intro}

\ref{sec:intro}

Handles bibliography \begin{thebibliography}

\bibitem{mybook} …

\cite{mybook}

Can include other files \input{section2.tex}

\include{appendix.tex}

Can auto-generate table of contents etc \tableofcontents

Can even do nice slides \documentclass{beamer}
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Steps to create a LaTeX document
• Writing a LaTeX document resembles software development:

• You can use Linux command line, any of Windows IDEs (TeXnicCenter is good), or 
one of the many online LaTeX systems

• There is also software called LyX, which is based on LaTeX and produces “live” 
visual result

• Beware that LyX files are a heavy extension of LaTeX, and can not be used 
without LyX (not portable!)
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Edit the text files and 
the bibliography

Pre-process the files
Create the final 

publishable document
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Summary
• Software development is a profession and requires professional tools

• Open Source code drives the technological and scientific progress

• “Language” can mean many things: a programming language, a visual modelling 
language, a markup language…

• …and actually many other languages
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