
Florido Paganelli Working with SVN or git 1/55Tutorial Day 17

Working with SVN and git

Florido Paganelli
Lund University

florido.paganelli@hep.lu.se

Florido Paganelli Working with SVN or git 2/55Tutorial Day 17

Outline

What are version/revision control
systems

Generic concepts of version/revision systems

SVN

Generic concepts of SVN

SVN tutorial

Florido Paganelli Working with SVN or git 3/55Tutorial Day 17

Why version/revision systems?

Say you wrote some piece of code, and you give it to a colleague.

Your colleague discovers it contains errors. You must fix them!

You take the files and make a change trying to fix. Unfortunately it was a
big mistake and you had to change quite lots of code.

At the same time, your colleague really needed to work with these, so he
made other changes himself.

Once you compile, you discover that something else that worked before is
not working anymore.

What went wrong? Would be nice if you could compare what you
changed...what your colleague changed... but, you overwrote all your old
code!

Solution: make a backup copy before every change!

Version systems make it easy to backup , share and compare changes.

Florido Paganelli Working with SVN or git 4/55Tutorial Day 17

Concepts of version systems

Working copy: the latest version of a set of files that you want to
work on. This is usually local to your machine.

Revisions: every “version” of one or more files gets a revision tag.
This can be a number, a label, a string. Usually is increasing numbers.
It somewhat identifies the moment in time when these files were
“accepted” as good for the rest of the project.
For this reason these systems are also known as
Revision Systems

Commit: the action assigning a revision number to the changes
made in the working copy.
The meaning is: I like the changes I did to these files, I accept them.
It usually involves adding the files to a revision control database.

Checkout: the action of retrieving a revision into a working copy.

Florido Paganelli Working with SVN or git 5/55Tutorial Day 17

Network

Concepts of version systems

Network

Local
Working
Copy A

Remote
Repository

Checkout

Commit

Network

Local
Working
Copy B

Checkout

Commit

Local
Working
Copy C

C
h

ecko
u

t

C
o

m
m

it

Florido Paganelli Working with SVN or git 6/55Tutorial Day 17

1. Checkout existing code from
repo

Network

Local
Working
Copy

Remote
Repository

Checkout

Current Revision #:

123

Florido Paganelli Working with SVN or git 7/55Tutorial Day 17

2. Make changes in the working
copy

Network

Local
Working
Copy

Changes

Remote
Repository

Current Revision #:

123

Florido Paganelli Working with SVN or git 8/55Tutorial Day 17

3. Commit a new version/revision

Network

Local
Working
Copy changed

Commit Remote
Repository

Current Revision #:

124

Florido Paganelli Working with SVN or git 9/55Tutorial Day 17

Fork
Time

SVN trunk

Forked SVN trunk

To copy a whole trunk into another working copy, to create a completely different
program from the existing one.

≠

Florido Paganelli Working with SVN or git 10/55Tutorial Day 17

SVN trunk

Branch
Time

To copy a whole trunk into another folder to add some features or functionalities that
are not compatible with the original working copy

Branch 2 – feature B not compatible with A and
trunk

Branch 1 – feature A not compatible with trunk

Florido Paganelli Working with SVN or git 11/55Tutorial Day 17

Tagging
Time

trunk

Branch 2 not compatible with 1

Tagging: To copy a selected subset of the code in the working copy for it to be part
of a specific release version of the software.

● Release: the copy of a working copy of a specific version of a software when
made publicly accessible to users.

Branch 1
Tag

Branch 3 – compatible with 1

Florido Paganelli Working with SVN or git 12/55Tutorial Day 17

Version systems: products and
features

Product staging Local
commit

diff Fork/branc
h
manageme
nt

Distributed/
Collaborati
ve

Compatibili
ty

CVS
(Current
Version
Stable)

N N Y Y N ?

SVN
(SubVersio
N)

N N Y N N ?

Git Y Y Y Y Y SVN
CVS

Florido Paganelli Working with SVN or git 13/55Tutorial Day 17

Preparing for the tutorial

Install the SVN package via CLI:
sudo aptget install subversion

Create a folder in your home folder for
sources:

mdkir ~/svn/

cd ~/svn

Florido Paganelli Working with SVN or git 14/55Tutorial Day 17

Subversion (SVN)

Became the most widely used after CVS, but the two of them
have orthogonal features

Stores the complete file at every revision

Has a database with the changes and revision logs

Mainly centralized: a server keeps all the information, users
checkout and commit. Every commit is assigned a new tag.

Multiple users can access a repository.

Tagging, branching, forking, merging are done by hand and
are based on conventions on the folder names:

The main repository is stored in a folder called /trunk

Branches are stored in /branches

Tags are stored in /tags

Florido Paganelli Working with SVN or git 15/55Tutorial Day 17

SVN tutorial outline

Checkout from a repository

Add files to the working copy

Commit changes to a repository

Check changes

Diffing

Reverting

Merging

Resolution of conflicts

Patching

How to use it for your own code

Graphical clients

Florido Paganelli Working with SVN or git 16/55Tutorial Day 17

What commands are available?

$ svn help
$ man svn

Florido Paganelli Working with SVN or git 17/55Tutorial Day 17

SVN checkout

Network

~/svn svn.hep.lu.se

$ svn co http://svncourse.hep.lu.se/svncourse/trunk/ svncourse

file:///nfs/users/floridop/Documents/teaching/programming4science/florido/%23http:%2F%2Fsvncourse.hep.lu.se%2Fsvncourse%2Ftrunk%2F

Florido Paganelli Working with SVN or git 18/55Tutorial Day 17

SVN checkout

> svn co http://svncourse.hep.lu.se/svncourse/trunk svncourse
Checked out revision 0.

svn : the subversion command

co : a shorthand for checkout

http://svncourse.hep.lu.se/svncourse/trunk
The name of the remote repository we want to sync with, and we
take the upstream or main branch, trunk

svncourse
The local folder that will be created upon checkout

Revision: a number assigned to a defined version of the code, that
gets incremented at every commit.

Florido Paganelli Working with SVN or git 19/55Tutorial Day 17

Inspect the working copy

The .svn folder hosts the .svn database

! you should usually NOT touch this folder.

> cd svncourse
> ls ltrah
total 16K
drwxxx 3 pflorido hep 4,0K 28 nov 16.50 ..
rwxxx 1 pflorido hep 1,1K 28 nov 17.55 asciifun.py
drwxxx 6 pflorido hep 4,0K 28 nov 17.59 .svn
drwxxx 3 pflorido hep 4,0K 28 nov 18.01 .

> svn info
Path: .
URL: http://svncourse.hep.lu.se/svncourse
Repository Root: http://svncourse.hep.lu.se/svncourse
Repository UUID: 3f457e7b963549f89b60cec4875accfe
Revision: 1
Node Kind: directory
Schedule: normal
Last Changed Author: courseuser
Last Changed Rev: 1
Last Changed Date: 20141128 17:59:27 +0100 (fre, 28 nov 2014)

Florido Paganelli Working with SVN or git 20/55Tutorial Day 17

A side note about the example code
in the repository

The sample code uses some additional
software and libraries that has nothing to
do with SVN. To make the code work, you
need to install these libraries manually (if
they are not already in the virtual
machine!) with the command:

sudo aptget install pythonpyfiglet
figlet

Florido Paganelli Working with SVN or git 21/55Tutorial Day 17

WorkingAdd files

Create a copy of asciifun.py, save it with your name.
Example: florido.py

Edit the file and change the output text with your name.

Run
 svn status
What happens?

An svn file can be in different statuses: use
 svn help status
to discover them.

The file we just created is not yet in the working copy database. We must
add it with
 svn add florido.py (use your name here)

Check svn status now. What happens?

Copy

Florido Paganelli Working with SVN or git 22/55Tutorial Day 17

Commit

Up to now, the files are only staying on our local
disk, in the working copy. But we want to share
them, hence save them back on a remote
repository!

Run
 svn commit username=florido
Using your first name.
When asked, type the password (case sensitive):

Working

Copy commit
Remote

Repository

Password for 'florido':

Oxana
Typewritten Text

Oxana
Typewritten Text

Oxana
Typewritten Text

Oxana
Typewritten Text
ask the teacher

Oxana
Typewritten Text

Florido Paganelli Working with SVN or git 23/55Tutorial Day 17

Commit

A file editor will pop up. This is because every
commit generates a log.

A committer is requested to describe the changes
made on the code and the effect it might have on
the rest of the codebase.

Once you save the file, the comment and the
changes will be sent to the remote repository.

● Tip: the file editor can be changed.
For example, to use geany, execute:
export SVN_editor=geany

Working

Copy commit
Remote

Repository

Password for 'florido':
Adding florido.py
Transmitting file data .
Committed revision 3.

Florido Paganelli Working with SVN or git 24/55Tutorial Day 17

Commit – what happened?

Run
 svn info

Run
 svn info http://svncourse/hep.lu.se/svncourse

Discuss the differences with the teacher.

http://svncourse/hep.lu.se/svncourse

Florido Paganelli Working with SVN or git 25/55Tutorial Day 17

Commit – what happened?

Run
 svn info

Run
 svn info http://svncourse/hep.lu.se/svncourse

Discuss the differences with the teacher.

Working

Copy commit
Remote

Repository

Working

Copy

Working

CopyWorking

Copy

commit

commit

commit
The working copies
are DIFFERENT!

http://svncourse/hep.lu.se/svncourse

Florido Paganelli Working with SVN or git 26/55Tutorial Day 17

The commit log

Keeps track of the commits

Run
svn log v

to see it
> svn log

r2 | courseuser | 20141201 09:28:51 +0100 | 2 lines
Changed paths:
 M /asciifun.py

Removed license comment

r1 | courseuser | 20141128 17:59:27 +0100 (fre, 28 nov 2014) | 5 lines
Changed paths:
 A /asciifun.py

First Commit

This includes the asciifun file, that prints
funny stuff on screen

Florido Paganelli Working with SVN or git 27/55Tutorial Day 17

Update

We need to sync the status of the remote
repository with our local working copies. In this
way we will get each other's contributions.

Run
svn update

Run
svn info

Run
svn status v

Working

Copy update
Remote

Repository

Florido Paganelli Working with SVN or git 28/55Tutorial Day 17

Revision numbers explained

> svn status v
 5 5 florido .
 5 3 florido florido.py
 5 4 courseuser courseuser.py
 5 5 florido florido2.py
 5 2 courseuser asciifun.py

Working revision:
The current state of the

Working Copy

Repository revisions:
Last committed revision

and author

● To see the updates pending in the repository, use
svn status vu

● The asterisk * shows the updatable changes

Florido Paganelli Working with SVN or git 29/55Tutorial Day 17

Change code and commit

Best practice: before changing anything, always do
an update, so that you're sure you're working on the
latest version of a file. Then you're safe to commit.

Exercise:

1. Update

2. Do some changes in the file with your name

3. run svn status uv

4. compare revisions

5. Commit

6. run svn status uv again and discuss with the teacher.

Florido Paganelli Working with SVN or git 30/55Tutorial Day 17

Diffing
Make some change in a file in your working copy.

Run
svn diff

> svn diff
Index: florido.py
===
 florido.py (revision 5)
+++ florido.py (working copy)
@@ 8,7 +8,7 @@

 def main():
 f = Figlet(dir='/usr/share/figlet/',font='pagga')
 print f.renderText('It's me, Florido!')
+ print f.renderText('I'm not saying it again, this is flo here')
 return 0

 if __name__ == '__main__':

A' A''
==
?
!=

Florido Paganelli Working with SVN or git 31/55Tutorial Day 17

Reverting not committed changes

Say that we are not happy with the
changes we just made to a file and we
want to go back to the repository version.

Run
svn revert florido.py
svn diff

Careful! You will loose all the
changes done and not committed!!!

Florido Paganelli Working with SVN or git 32/55Tutorial Day 17

Reverting to a previous revision

Say that we don't like the current revision state, and we
want to roll back the code to a state of a different
revision back in time.

The main concept is:
you never go back in the revision history.
This is actually nice because in a collaborative
environment, keeps track of who-did-what with no
cheating allowed :)

But in practice, this made cumbersome the way to revert
to a previous revision. In fact, there are different
methods to roll back a change. I will show you two.

Florido Paganelli Working with SVN or git 33/55Tutorial Day 17

Revert to old revision: method 1
export

SVN export is a command used to checkout a single file or a
directory

The easy way to rollback is to use it to export directly from and old
revision into the working copy

NOTE: you need to mention that there was a rollback in the
commit comment, the system will not do for you.

Exercise:

use export to roll back to one of the revisions of your file. Example:
svn export r 3 florido.py .

will roll back florido.py to revision 3 in the folder . (current folder)

svn diff

svn commit the changes

Florido Paganelli Working with SVN or git 34/55Tutorial Day 17

Merging

Suppose we have two versions of a document with different contents

We want to make one out of two

This is often referred as three-way-merge

We need to choose which part of each document we want to keep

There exist tools to do it, for example the excellent meld

SVN can attempt to do merges for us:

If the merges are simple, i.e. the changed content of A' can be easily mised with that of
the content of A''. For example, the documents differ a little but the changes in each
document are not overlapping.

If we provide it with some hint on how to do the merges

If the above fail, it will ask us to do the merge manually, for example using meld

The most frequent case of merge is in case of conflicts, we'll see it later!

A'
A' + A''

A''

Florido Paganelli Working with SVN or git 35/55Tutorial Day 17

Revert to old revision: method 2
reverse merge

Reverse merge is the name that SVN uses to
represent the attempt to merge a document
with a previous revision of the same document.

Let's rollback one of our files to a previous
revision:
svn merge r HEAD:3 florido.py

This will NOT change the file revision. Will just copy the
content of the file at revision 3 into the latest (HEAD)
revision. You can check with svn diff and svn status
v.

Florido Paganelli Working with SVN or git 36/55Tutorial Day 17

Conflicts
A conflict happens when somebody edits a file that
somebody else edited and committed before, and
tries to commit without UPDATING.

Working

Copy commit
Remote

Repository

Working

Copy

Working

CopyWorking

Copy

commit

commit

commitThe A' are all different!!
Who's right? FIGHT!

A'
from

 User3

A'
from

 User2

A'
from

 User4

A

A'
from

 User1

????

User3

User4

User2

User1

This usually happens when everybody is editing the same file.
This is the reason why in big projects files are partitioned among programmers
so that they don't write over each other.

Florido Paganelli Working with SVN or git 37/55Tutorial Day 17

Let's generate a conflict!

Exercise: open and add some code (whatever!)
to asciifun.py

It can be:

Changing the font type, list of fonts as in ls
/usr/share/figlet/*.flf

Changing the sentence

Adding another print...

Adding a for loop...

All commit! The first to commit will be the winner :)

Florido Paganelli Working with SVN or git 38/55Tutorial Day 17

Handling a conflict

The first to commit will set the new revision.

If you try to commit now, SVN will complain that
your version is not up to date with the repository

If you try to update, SVN will notice that the file you
changed has been already changed on the
repository: this is called a conflict.

Depending on the complexity of the changes made,
SVN may or may not try do do a merge for you. If it
fails, it will ask you to resolve the conflict manually.

Florido Paganelli Working with SVN or git 39/55Tutorial Day 17

Conflicts resolution
When a conflict is found, SVN shows
several options to resolve it:

> svn up
Conflict discovered in 'asciifun.py'.
Select: (p) postpone, (df) difffull, (e) edit,
 (mc) mineconflict, (tc) theirsconflict,
 (s) show all options: s

 (e) edit change merged file in an editor
 (df) difffull show all changes made to merged file
 (r) resolved accept merged version of file

 (dc) displayconflict show all conflicts (ignoring merged version)
 (mc) mineconflict accept my version for all conflicts (same)
 (tc) theirsconflict accept their version for all conflicts (same)

 (mf) minefull accept my version of entire file (even nonconflicts)
 (tf) theirsfull accept their version of entire file (same)

 (p) postpone mark the conflict to be resolved later
 (l) launch launch external tool to resolve conflict
 (s) show all show this list

Florido Paganelli Working with SVN or git 40/55Tutorial Day 17

Conflicts resolution - diff
Let's use df to see what the
changes are:

 (s) show all options: df
 .svn/textbase/asciifun.py.svnbase ons dec 3 11:53:47 2014
+++ .svn/tmp/asciifun.py.2.tmp ons dec 3 11:55:36 2014
@@ 7,7 +7,11 @@
 from pyfiglet import Figlet

 def main():
 f = Figlet(font='pagga')
+<<<<<<< .mine
+ f = Figlet(font='slant')
+=======
+ f = Figlet(font='futura')
+>>>>>>> .r13
 print f.renderText('This text is awesome! :D')
 for x in range (0, 3):
 print f.renderText("the time is %d" % (x))
Select: (p) postpone, (df) difffull, (e) edit, (r) resolved,
 (mc) mineconflict, (tc) theirsconflict,
 (s) show all options:

Florido Paganelli Working with SVN or git 41/55Tutorial Day 17

Conflicts resolution - diff
Let's use df to see what the
changes are:

 (s) show all options: df
 .svn/textbase/asciifun.py.svnbase ons dec 3 11:53:47 2014
+++ .svn/tmp/asciifun.py.2.tmp ons dec 3 11:55:36 2014
@@ 7,7 +7,11 @@
 from pyfiglet import Figlet

 def main():
 f = Figlet(font='pagga')
+<<<<<<< .mine
+ f = Figlet(font='slant')
+=======
+ f = Figlet(font='futura')
+>>>>>>> .r13
 print f.renderText('This text is awesome! :D')
 for x in range (0, 3):
 print f.renderText("the time is %d" % (x))
Select: (p) postpone, (df) difffull, (e) edit, (r) resolved,
 (mc) mineconflict, (tc) theirsconflict,
 (s) show all options:

mine :The changes in the working copy

r13 :The changes in the remote repos

Divider between the two changes

Florido Paganelli Working with SVN or git 42/55Tutorial Day 17

Conflicts resolution - diff
mine-conflict: select my changes and resolve the
conflict

theirs-conflict: select the repository changes and
resolve the conflict

edit: open an editor and solve the conflict manually

resolve: leave the file with this funny structure and
resolve the conflict

merge: use SVN builtin tool to merge

launch: use external tool to merge

postpone: leave the file with the funny structure,
but do NOT resolve the conflict!

Florido Paganelli Working with SVN or git 43/55Tutorial Day 17

Conflicts resolution - diff
Exercise:

Look at merge option. Do not merge! Go
back with abort (a)

Try the launch option. What happens?

Let's go postpone: we will resolve the
conflict using meld

List the contents of the SVN directory.
What happened?

Florido Paganelli Working with SVN or git 44/55Tutorial Day 17

Merging with meld

We now have three version of a document we want to merge into one.

Meld command line syntax is as follows:
meld file1 file2 file3

The best is to use it this way:
meld source1 destination source2

That means, we want to merge the contents of the files source1 and
source2 into destination.

In our case:
meld asciifun.py.mine asciifun.py asciifun.r16

where r16 is revision number that conflicts, written by SVN when we
chose postpone.

Run it!

A'
A' + A''

A''

Florido Paganelli Working with SVN or git 45/55Tutorial Day 17

Merging with meld
A'

A' + A''
A''

1. Arrows can be used to merge the highlighted content into the pointed file

2. save the result by pressing this button (saves all modified files!)

Florido Paganelli Working with SVN or git 46/55Tutorial Day 17

Conflicts resolution:
resolved

Once we're done with resolving the
conflict, we can tell the SVN system to
accept the resolution. This is done using
the command
 svn resolved asciifun.py

After this, we're ready to commit.

> svn commit
svn: Commit failed (details follow):
svn: Aborting commit: '/nfs/users/floridop/test/svn/svncourse/asciifun.py'
 remains in conflict
> svn resolved asciifun.py
Resolved conflicted state of 'asciifun.py'
> svn commit

Florido Paganelli Working with SVN or git 47/55Tutorial Day 17

Creating and applying patches

A patch is a special file containing information
on how to fix a certain problem.

It's called “patch” because its fixes can be applied
on top of what already exist.

In the computer world, a patch can be either a
binary or a source file. We will not discuss
binary patches, only source code patches.

The format of a patch is similar to the diff
format we've seen already.

Florido Paganelli Working with SVN or git 48/55Tutorial Day 17

Creating patches

A way of creating a patch is to use the svn
diff command.

Say that we gave the code of asciifun.py file
at revision3 to a friend, and we want to give
the latest version.

The friend does not want to use SVN

He has very limited space to carry the new code
around, for example on a usb pen. He just wants
the newer parts.

Florido Paganelli Working with SVN or git 49/55Tutorial Day 17

Creating patches wit svn diff

The syntax for the svn diff command is as
follows:

svn diff r asciifun.py@3 asciifun@HEAD

This generates a patch file output. What we have to
do is write the output to a file:
svn diff r asciifun.py@3 asciifun@HEAD >
asciifun.py.20141212.patch

mailto:asciifun.py@3
mailto:asciifun@HEAD
mailto:asciifun.py@3
mailto:asciifun@HEAD

Florido Paganelli Working with SVN or git 50/55Tutorial Day 17

Applying patches with patch

We're about to use a program called “patch”, that does three
way merge of different files given the patch file previously
created.

ALWAYS READ THE CONTENTS OF A PATCH FILE BEFORE
APPLYING IT

You can never be sure it doesn't contain malicious code!!

Let's restore revision 3 of asciitest.py to test the patch.

Create a folder in your home
mkdir ~/test/

Export to that folder asciifun.py at revision 3 with svn export (check
previous slides!)

copy the asciifun.py.20141212.patch patch file into the ~/test/ folder

cd into the test folder

Florido Paganelli Working with SVN or git 51/55Tutorial Day 17

Applying patches with patch

Make sure that both the revision 3 asciifun.py file and the
asciifun.py.20141212.patch files are in the ~/test/ folder.

cat the content of asciifun.py

Run the following:
patch p0 i asciifun.py.20141212.patch

p0: go up of 0 directories (it does cd ../ as many times as the
indicated number)

i asciifun.py.20141212.patch: use
asciifun.py.20141212.patch as input file that contains
instructions how to patch.

cat the content of asciifun.py again. It changed!

Florido Paganelli Working with SVN or git 52/55Tutorial Day 17

Try this at home!
Or, How to benefit of revision control for your own code

One does not necessarily need a remote repository. By installing
subversion tools one gets also all the needed to create a repo himself.

So if you get to do some coding in the future, create your own
repository:
svnadmin create ~/mysvnrepo

It will create a directory myrepo that contains the database.

Add the files you want to track/version/revise to the database:
svn import /path/to/filestotrack/

file:///home/username/mysvnrepo m “Intial import of files”

From now on you can checkout the repository using
 svn co file:///home/username/mysvnrepo /path/to/workingcopy/
And work inside /path/to/workingcopy/

Florido Paganelli Working with SVN or git 53/55Tutorial Day 17

Graphical Clients

Want to try a graphical client?

Minimal one: run
rapidsvn

This one is available in Lubuntu repositories.

Feature-rich one:
cd ~/Software
cd smartsvn8_6_2
cd bin
./smartsvn.sh

This one is NOT available on Lubuntu repositories. You need to download it from the internet.
http://www.wandisco.com/smartsvn/home

A repository can also be equipped with cool network tools to share and
visualize the changes, like TRAC. An example from NorduGrid SVN:

http://svn.nordugrid.org/trac/nordugrid/

Big example: Click here

http://www.wandisco.com/smartsvn/home
http://svn.nordugrid.org/trac/nordugrid/
http://svn.nordugrid.org/trac/nordugrid/changeset?reponame=&new=28835@arc1/trunk/src/services/a-rex/infoproviders/ARC1ClusterInfo.pm&old=25831@arc1/trunk/src/services/a-rex/infoproviders/ARC1ClusterInfo.pm

Florido Paganelli Working with SVN or git 54/55Tutorial Day 17

References

SVN Quick Reference Card:
http://wiki.ssg.uab.edu/download/attachments/3080576/Subversion+Quick+Reference+Card.pdf?version=1

The SVN Redbook
http://svnbook.red-bean.com/

Patching with SVN:
https://ariejan.net/2007/07/03/how-to-create-and-apply-a-patch-with-subversion/

http://wiki.ssg.uab.edu/download/attachments/3080576/Subversion+Quick+Reference+Card.pdf?version=1
http://svnbook.red-bean.com/
https://ariejan.net/2007/07/03/how-to-create-and-apply-a-patch-with-subversion/

Florido Paganelli Working with SVN or git 55/55Tutorial Day 17

Pictures references

https://openclipart.org/

http://www.libreoffice.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

