
Introduction to Programming and Computing
for Scientists

Tutorial-7a: Parallel (multi-cpu) Computing

HTTP://WWW.HEP.LU.SE/COURSES/MNXB01

Programming for Scientists Balazs Konya (Lund University) Tutorial7a 1 / 13

Outline

• Parallel computing in a nutshell:

• motivation, terminology, solutions

• Howto ride on ”big iron”:

• The practical basics of working with batch systems

• Multi-task jobs

Programming for Scientists Balazs Konya (Lund University)

http://arstechnica.com/information-technology/2013/07/creating-a-99-parallel-computing-machine-is-just-as-hard-as-it-sounds

Tutorial7a 2 / 13

What is parallel computing?

• Traditional computing: serial execution of a
single stream of instructions on a single
processing element

• Parallel computing: simultaneous execution
of stream(s) of instructions on multiple
processing elements

• Non-sequantial execution of a
computational task

• (part of) the problem solved by
simultaneous subtasks (processes)

• Relies on the assumption that problems
can be divided (decomposed) into smaller
ideally independent ones that can be
solved parallel

Balazs Konya (Lund University) Programming for Scientists Tutorial7a 3 / 13

What is parallel computing?

• Parallelism levels (”distance” among the processing elements):

• Bit and Instruction level: inside the processors (e.g. 64 bits
processor can execute 2 32 bits operations)

• Multicore/multi cpu level: inside the same chip/computer. The
processing elements share the memory, system bus and OS.

• Network-connected computers: clusters, distributed computing.
Each processing element has its own memory space, OS,
application software and data

• Huge difference depending on the interconnects: e.g. High
Performance Computing (supercomputers) vs. High
Throughput Computing (seti@home)

Balazs Konya (Lund University) Programming for Scientists Tutorial7a 4 / 13

Some classifications
Flynn’s taxonomy:

• SISD: sequential ”normal” programs

• MIMD: most of the parallel programs

• SIMD: data chewing by the same algorithm

• MISD: rarely exists

SMP vs. MPP (or the shared memory vs. distributed memory
debate):

• SMP: Symmetric Multi Processors system: shared memory
approach
• ”single box” machines, OpenMP programming family

• MPP: Massively Parallel Processors system: distributed memory,
network-connected CPUs
• ”clusters”, MPI programming family (message passing)

• SMPs are easier to program but scale worse than the MPPs

Balazs Konya (Lund University) Programming for Scientists

Single Instruction Multiple Instruction

Single Data SISD MISD

Multiple Data SIMD MIMD

Tutorial7a 5 / 13

Why parallel computing?
• It is cool

• Sometimes the problem does not fit into a single box: you
need more resources than you can get from a single
computer

• To obtain at least 10 times more power than is available
on your desktop

• To get exceptional performance from computers

• To be couple of years ahead of what is possible by the
current (hardware) technology

• The frequency scaling approach to increase performance
does not work any longer (power consumption issues):
• The new approach is to stuff more and more

processing units into machines, introducing
parallelism everywhere

Programming for Scientists Balazs Konya (Lund University) Tutorial7a 6 / 13

Measuring performance gain: the Speedup
• In an ideal scenario a program running on P processing

elements would execute P times faster..., giving us a linear
speadup

• Speedup S(n,P): ratio of execution time of the program on a
single processor (T1) and execution time of the parallel
version of the program on P processors (TP):

• In practice, the performance gain depends on the way
the problem was divided among the processing
elements and the system characteristics.

• Amdahl’s law: gives an upper estimate for maximum
theoretical speedup and states that it is limited by the non-
parallelized part of the code:

• alpha is the sequential fraction of the program
• e.g. if 10% of the code is non-parallizable, then the

maximum speedup is limited by 10, independent of the
number of used processors (!)

 Balazs Konya (Lund University) Programming for Scientists

source: wikipedia

Tutorial7a 7 / 13

The dark side
”the bearing of a child takes nine months, no matter how many women are assigned”

• Not everything is suitable for parallelization

• Complexity increases as more and more communication is involved:
• embarrasingly paralell -> course-grained -> fine-grained problem domains

• Parallel computing opens up new set of problems:
• Communication overheads
• Concurrency problems
• Synchronization delays
• Race conditions and dead locks

• Nobody wants to debug a parallel code...

• Developing & deploying a parallel code usually consume more time than the
expected speedup

• A practical advice for parallelization:
• Unless you have an embarrasingly parallel problem, forget it
• If you are stubborn, then at least use an available parallel (numerical) library and

start with the profiling (understanding) of your program
• Wait for the holy grail of computational science: automatic parallelization by

compilers

Balazs Konya (Lund University) Programming for Scientists Tutorial7a 8 / 13

Accessing remote computers
• Secure Shell (SSH) is a secure way of accessing

remote computers, executing commands
remotely or moving data between computers.

• All network traffic is encrypted

• The de-facto protocol for remote login &
computer access

• SSH clients are available on non-linux
platforms too (putty and winscp on
windows)

• SSH servers are listening to incoming
connections on the standard TCP 22 port

• Login is done with username/passwd or
using keypairs (advanced topic)

• Various Windows and Linux clients exist

Programming for Scientists Balazs Konya (Lund University) Tutorial7a 9 / 13

Exercise 1: working with a cluster
Goal: understand basic concepts of cluster, Workload Management system, queue, jobs

• Cluster: Iridium cluster at LUNARC

• Frontend: pptest-iridium.lunarc.lu.se

• Batch system: SLURM

Tasks:

• Log in to the cluster:
• > ssh –X <username>@<clustername>

• Copy files to the cluster:
• scp localfile user@machine:remote_dir

• Look around on the front-end (e.g. inspect CPU and memory details):
• cat /proc/cpuinfo; cat /proc/meminfo; top

• who, pwd

• Check man pages for SLURM commands:
• sbatch, sinfo, squeue, scontrol, scancel

Balazs Konya (Lund University) Programming for Scientists Tutorial7a 10 / 13

Exercise 2: simple jobs
• List SLURM queues (partitions)

• > sinfo

• Create file myscript (use provided
examples)

• Submit simple jobs and check their status:

• > sbatch myscript

• > cat slurm-<jobid>.out

• > squeue

• > scontrol show job <jobid>

• Repeat with multi core/node jobs

• sbatch –N4 myscript

• sbatch –n6 myscript

• In a multi-core advanced example, pay attention
how jobs are distributed across nodes and cores

Balazs Konya (Lund University) Programming for Scientists

Simple myscript:

#!/bin/sh

#SBATCH -J “simple job”

#SBATCH --time=1

echo “we are on the node”

hostname

who

sleep 2m

Multicore/node myscript:

#!/bin/sh

#SBATCH -J “multi job”

#SBATCH --time=1

srun hostname |sort

sleep 5m

Tutorial7a 11 / 13

Exercise 3: task farming
• With a help of a master script you are going to execute X number of subtasks on

Y number of processing units

• The master script (master.sh) takes care of launching (new) subtasks as soon as a
processing element becomes available

• The worker.sh script imitates a payload execution that corresponds to a subtask

Steps:

1. Download, copy the scripts to a new directory on pp-test-iridium

2. Set the problem size (NB_of_subtasks) and the number of processing elements
(#SBATCH -n) in the master.sh, the payload size (i.e. How long a subtask runs)
in the worker.sh

3. Launch the taskfarm (sbatch master.sh), monitor the execution of the subtasks
(squeue –j <jobid> -s) and finally check how much time the taskfarm
processing required (check the output files of the subtasks and the slurm job)

4. Repeat the taskfarming with modified parameters, What is the speedup?

Balazs Konya (Lund University) Programming for Scientists Tutorial7a 12 / 13

Further reading

• Introduction Parallel computing (by Lawrence Livermore National Laboratory)

• https://computing.llnl.gov/tutorials/parallel_comp/

• most of the images are taken from this tutorial

• SLURM:

• https://computing.llnl.gov/linux/slurm/quickstart.html

Programming for Scientists Balazs Konya (Lund University) Tutorial7a 13 / 13

https://computing.llnl.gov/tutorials/parallel_comp/
https://computing.llnl.gov/tutorials/parallel_comp/

