Project Instructions

1 Introduction

The Swedish Meteorological and Hydrological Institute (SMHI) routinely
records the temperature at various locations in Sweden. In some places, this
has been going on for hundreds of years. In 2013, the institute published
two datasets with temperature readings from Uppsala and Stockholm. The
Uppsala dataset contains one reading per day starting from January 12:th
1722. The Stockholm dataset is slightly more recent, stretching back to
January 1:st 1756. There is clearly a wealth of information hiding in these
datasets. Use your skills as a programmer and as a scientist in order to make
some interesting observations regarding the Swedish weather!

2 Project description

Write a program that extracts information from the SMHI datasets. Use
plots in order to visualize your results. While you are free to utilize any
tools at your disposal, ROOT is the recommended method. If you do choose
to use ROOT, a small code skeleton (see Section 4) is provided to get you
started. Section 3 contains a few examples of what kind of information
you could get from the data. Decide on at least three interesting results to
produce. At least one of them should not come from Section 3. Use your
imagination!

In the real world, scientists share code and collaborate. In this project,
you will work together with a colleague (or perhaps two colleagues in case of
an odd number of students). Each group will be assigned an svn repository.
Add your code here. Now you can both work independently, committing
your changes to the repository as you go. When working on this kind of
project, it is customary to keep a log. The svn repository should contain a
file called ChangeLog where you document your progress. Add a date and a
short descriptive comment to the log for each major change that you make
to the code. The examinators should be able to understand how the code

developed by reading the log. Discuss with your colleague early on what
functions need to be written and agree preliminarily on who should write
what in order to avoid unnecessary collisions. If you get stuck or if you
realize that the code needs to be restructured, go talk to your colleague.
This is a team project!

Naturally, you need to document not only your code but also your results.
Use ITEX to write a scientific report that describes the results that you
managed to produce. The report should be complete with plots to back up
your claims. Scientists collaborate on their reports in very much in the same
way as they collaborate on their code. Begin by splitting the report into
many .tex files that you \input from a main file. Use one .tex file for each
result that you decided to produce. Then put all of the report code on svn.
Even for very big reports, if everyone is just working on their own part of
the project using the appropriate .tex file, there are rarely problems with
collisions.

3 Example results

This section contains a few examples of what you could do with the data.
Use them as guidelines and as inspiration. You don’t have to do everything
the examples say, but more complete implementations earn you both brownie
points and (probably) a better grade. Remember to comment your code!

3.1 The temperature of a given day

Use the data to make a histogram of the temperature of a given day of the
year. An example of such a histogram is shown in Figure 1. If you choose
to implement this example, uncomment either of the two functions called
tempOnDay. One of the functions accepts a month and a day as arguments.
The other one accepts a date (which is an integer in the range 1 to 365, or
366 if you design your code to understand leap years). Implement one or
both. If you have one, the other should be simple!

Create a histogram like the one shown in Figure 1.

What is the mean temperature of the given day?

What is the standard deviation of the temperature?

e Can you predict the probability of observing a particular temperature?

14

. Temperature on 23/8

Entries

12

10

4

2

Q0
III|III|III|III|III|III|III|I

1 1 1 1 I 1 1 1 1 I 1 1 1 I II 1 1 1 I 1 1 1 1
920 -10 0 10 20 30 40
Temperature [°C]

Figure 1: Histogram showing the temperature on August 23:rd every year
since 1722.

Hints In ROOT, you often write functions that create one or more plots.
If you want to look at those plots after the function completes, you have to
put the histograms on the heap. If you put them on the stack, they will
go out of scope and be deleted automatically once the function completes.
Once a histogram is deleted it disappears from all plots. This can lead to
a situation where you create histograms on the heap that you never delete.
Technically, this fits the description of a memory leak. It’s a design flaw of
ROOQOT that it encourages memory leaks in this way. But since you will only
be creating a handful of histograms for plotting, you shouldn’t worry about
it. A handful of histograms won’t cause the program to run out of memory.
The example code below shows how to create a histogram of integers with 365
bins between 1 and 366. The title of the axes can be specified directly in the
constructor using the trick shown. We then set the fill color to a darker red,
increment a bin and calculate some properties of the distribution. Finally,
we create a new canvas and draw the histogram.

http://root.cern.ch/root/html/TH1.html
http://root.cern.ch/root/html/TAttFill.html

TH1I* hist = new TH1I(s
, 300, -20, 40);

hist->SetFillColor(kRed + 1);

hist->Fill(33); //Increment the 33:rd day, February 2:nd
double mean = hist->GetMean(); //The mean of the distribution
double stdev = hist->GetRMS(); //The standard deviation
TCanvas* can = new TCanvas();

hist->Draw() ;

3.2 The temperature for every day of the year

If we can create a histogram showing the temperature of one day, why not
do it for every day of the year? Uncomment the tempPerDay function and
try it out! Figure 2 shows how the mean temperature varies throughout the
year. Of course, just knowing the mean is not all that interesting. In order
to make useful predictions, we also need to know the standard deviation of
the temperature of each day.

e Plot the mean temperature of each day of the year.

e Use error bars in order to visualize the standard deviation.

Hints The example code shows how to loop over every bin in a histogram
and explicitly set the contents and error of each one. In ROOT, bin 0 is the
underflow bin. This bin is not shown on plots. Bins 1 to nBins are what you
see when drawing the histogram. Finally, bin nBins 4+ 1 is the overflow bin.

for(int bin = 1; bin <= hist->GetNbinsX(); ++bin) {
hist->SetBinContent (bin, 5);
hist->SetBinError(bin, sqrt(5.));

}

3.3 The warmest and coldest day of each year

In Sweden, summers and cold and winters are colder. But which day is
actually the coldest? Implement the hotCold function and find out! Figure 3
shows when the warmest and coldest days have typically occured during the
last few hundred years. To make things more interesting, note that each
dataset contains readings from different places (the Uppsala dataset has

20

15

10

Temperature [°C]

50 100 150 200 250 300 350
Day of year

Figure 2: Histogram showing the mean temperature on each day of the year.

a few readings from Stockholm and vice versa). If you have the Uppsala
dataset, write your function such that all readings from a region other than
Uppsala are ignored. If you have the Stockholm dataset, ignore everything
but Stockholm.

e Create histograms of the warmest and coldest day each year.
e Predict when the warmest and coldest day is most likely to occur.
e Can you show both histograms in the same plot?

e Can you make a fit function that “wraps around” as in Figure 37

Hints The mean of a histogram could be obtained with the GetMean mem-
ber function. A more fancy, and sometimes more useful, way of extracting
information from a distribution is to fit a mathematical model to it. The ex-
ample code shows how to define a custom function (a Gaussian in this case)
and then fit that function to a distribution contained in a histogram. The
function is defined in the range [1,366] and takes three parameters. They are

http://root.cern.ch/root/html/TF1.html

0 r
;GEJ 95_ I Warmest day
. 85_ I Coldest day

V=

5

| |

3f ‘

of i l

1 | ||x

0 - bl el 1‘ I.\b.., -1° -

50 10 150 250 300 350

Day of year

Figure 3: The plot shows how often a given day of the year was the warmest
or coldest for every year since 1722. Lines show Gaussian fits of the distri-
butions.

(as defined in the Gaussian function) an amplitude, a mean and a standard
deviation. The meaning of the parameters passed to the Fit function is to
fit quietly (Q), to not automatically plot the function when the histogram
is plotted (0) and to fit only within the range in which the function is de-
fined (R). After fitting, we print the mean of the Gaussian as well as the
uncertainty of that mean. Finally, the example shows how to create a legend
containing two histograms and then draw those histograms in the same plot.

http://root.cern.ch/root/html/TLegend.html

double Gaussian(double* x, double* par) { //A custom function
return par[0]*exp(-0.5%(x[0]*x[0] - 2*x[0]*par[1] +
par [1]*par[1])/(par [2] *par[2]));

TF1* func = new TF1(, Gaussian, 1, 366, 3);
func->SetParameters(5, 200, 50); //Starting values for fitting
hist->Fit (func,)

cout << << func->GetParameter (1) << endl;
cout << << func->GetParError (1) << endl;
TLegend *leg = new TLegend(0.65, 0.75, 0.92, 0.92, s)

leg->SetFillStyle(0); //Hollow fill (transparent)
leg->SetBorderSize(0); //Get rid of the border

leg->AddEntry (hist, ,); //Use object title, draw fill
leg->AddEntry(anotherHist, ,); //Use custom title

hist->Draw();
anotherHist->Draw/(); //Draw on top of the existing plot
leg->Draw(); //Legends are automatically drawn with "SAME"

3.4 The mean temperature of each year

SMHI has produced some very nice plots that show the mean temperature of
each year since the temperature measurement started. An example is shown
in Figure 4 (a). Can we make something similar in ROOT? Of course we can.
Figure 4 (b) shows one such attempt. Try to make your own plot with the
tempPerYear function. The function accepts one argument. This is a future
(or past) year for which to predict the temperature using extrapolation.

e Plot the mean temperature of each year in your dataset.

e Fit the data with a model of your choice. Use the model to predict
the temperature of a given year in the future. Can you draw any
conclusions when it comes to global warming?

e Can you plot the deviation from the average as in Figure 47

e Can you plot the moving averages?

Rekonstruerad arsmedeltemperatur, Uppsala 1722-2013

_ g
JEE L1 i

0 50 i @ g e s g
B [{fe H 3 :

0SSO U VO DO POV L U PO VOO S U0 S ROO O U O SV SO VNS DO OO RS OO OO A SO0 OO

20 : : : I o : :
1720 1740 1760 1780 1800 1820 1840 1860 1880 1900 1920 1940 1960 1880 2000
ar

(a)

Temperature [°C]

o (e R

I I I 1 L 1
1750 1800 1850 1900 1950 2000

Year
(b)

Figure 4: The plots show the mean temperature of each year since 1722.
Positive and negative deviations from the mean are indicated by different
colors. Lines show moving averages. Both a plot from SMHI (a) and one
from ROOT (b) are shown.

Hints The neat deviation-from-the-average effect is actually obtained by
plotting several histograms in different colors on top of each other. Try it!
A moving average can be done using, for example, a graph. Add one point
to the graph for every few years in the histogram. The y-value of the point
should be the average of the surrounding years. Then plot the graph with
a smooth line between the points. The example shows how to create a new
graph and fill it with one point for each bin in a histogram. The call to
Expand increases the capacity of the graph by 100 if adding a new point
would make the graph run out of space. Finally, the example shows how to
draw the graph (on top of the current plot) with a smooth curve.

http://root.cern.ch/root/html/TLegend.html

TGraph* graph = new TGraph();
for(int bin = 1; bin < hist->GetNbinsX(); ++bin) {
graph->Expand (graph->GetN() + 1, 100);
graph->SetPoint (graph->GetN(), hist->GetBinCenter(bin),
hist->GetBinContent (bin)) ;

}
graph->Draw (i

4 Code skeleton

The code skeleton contains a file called rootlogon.C. If ROOT is started
from a directory that contains a rootlogon.C, it will execute all the state-
ments in the rootlogon function automatically. This is a convenient way
to set up the environment, e.g. by executing some style scripts that deter-
mine how plots should look. The provided rootlogon.C makes some basic
changes to the default plots. The code skeleton also comes with a class called
tempTrender and a script called project.cpp. These files are compiled and
loaded automatically by the rootlogon function. As you can see by look-
ing at the files, they are almost empty. It is your job to implement the
tempTrender class and any other classes or functions that you might need.
The datasets from SMHI are in the directory called data. Each group should
pick one out of the two datasets to work with. Try to get roughly the same
number of groups working with data from Uppsala and from Stockholm.
Good luck with the project!

	Introduction
	Project description
	Example results
	The temperature of a given day
	The temperature for every day of the year
	The warmest and coldest day of each year
	The mean temperature of each year

	Code skeleton

