Introduction to Programming and Computing for
Scientists

Oxana Smirnova

Lund University

Lecture 2

Oxana Smirnova (Lund University) Programming for Scientists Lecture2 1/ 32

Software development is not simply programming

How the customer explained it How the Project Leader How the Analyst designed it How the Programmer wrote it How the Business Consultant
understood it described it

How the customer was billed How it was supported What the customer really
needed

How the project was What operations installed
documented

Author unknown

* Most software/IT projects fail, even with excellent programmers

Oxana Smirnova (Lund University) Programming for Scientists Lecture2 2/ 32

Software development is many things

A set of skills

Oxana Smirnova (Lund University) Programming for Scientists

Software development as a process: a simplified picture

Requirement collection Testing and bug-fixing

understanding of the thereis no code without
problem bugs

$

Documenting

undocumented software
diesearly

~

Design and planning

mix of engineering
andart

’ Programming

Oxana Smirnova (Lund University) Programming for Scientists

Different software development methodologies

e Waterfall model: a straightforward * Agile development: too many bugs
sequential approach to do long-term planning

Agile Software Development
Analysis, Design,
Build, Test, Review
1 Meeting
day ’
1-2

(15mins)
weeks

e » B

Product Sprint Sprint Shippable Product
Backlog Backlog Increment

Daily

Sprint
Planning

B

J Implementation

* There are also rapid prototyping, incremental development, various
combinations of methodologies, and even cowboy coding (every student
does it)

Oxana Smirnova (Lund University) Programming for Scientists Lecture 2

5/ 32

Most programs implement an algorithm

e Algorithmis a well-defined
sequence of actions to be performed

 Starts from initial state
* May need initial input
* Proceeds through a sequence of
instructions in a strict order

* May include conditional
statements

* Terminates with a final state
e Algorithms can be expressed
through:
* Human language (ambiguous)
* Pseudocode (no standard)
* Flowcharts

* Other charts, tables,
programming languages

Oxana Smirnova (Lund University)

Programming for Scientists

* Flowchartis a graphical
representation of an algorithm

* Warning: complex flowcharts
may lead to “spaghetticode”
with many redirections

Lamp does
not work

Is it

lugged
P offg? lamp

Plug in the

Look atthe
bulb

Replace the
bulb

Buy a new
lamp

Lecture 2

6/ 32

Flowchart symbols overview

* Can be found in any presentation-making software

* Often used to describe not only algorithms, but also workflows

Start and end

L

Flow arrows

Process

Conditional

Data

Document

Disk

O UL

Tape

Oxana Smirnova (Lund University) Programming for Scientists Lecture2 7/ 32

Unified Modelling Language (UML)

* A standard way to visualize complex processes or systems

* You may never need to use it, unless you’ll become a professional developer

* Designed for object-oriented methods

* Uses diagrams to describe systems:

e Structure diagrams show objects and their relations
* Behaviour diagrams show activities and state changes

* There are many different “styles” of diagrams, but each has well-defined “language”

Customer

&name : String
&address - String

1

o=

Account

&rcashBalance - Double

1

Sticker : String
&quantity : Integer

InvestmentAccount savingAccount
&interastRate - Double
ﬁq:use:s:s\‘.l \t'u\<<use>>
oD *
\ét Kk =
g StockOrder

Graph by IBM

Oxana Smirnova (Lund University) Programming for Scientists

&commission : Double

sd Dine /
Customer Waiter Chef
order -._E E
order food bDE
senje wine ; 9
""""""""""""""" EE o
: ' g
\ : pickup .
e B St e S B =
b SeNET00dt i =
S
pay > 3
! H S
; S
O
Lecture2 8/ 32

A bit of legalism

* Even if you are not a professional programmer, the code that you write is an
Intellectual Property

* Much like scientific publications, music, photos etc
* Computer programs and even their design are protected by copyright
* Different laws exist in different countries

* In Swedish universities, it is your Intellectual Property

* In other countries and companies, your employer may own the code — check
the contract

* You should remember to mention code written by you in your CV

* What does ownership give you:
* Right to authorise copying (including copying for usage)
* Right to authorise modifications
* Right to authorise distribution

Oxana Smirnova (Lund University) Programming for Scientists

Lecture2 9/ 32

Software licenses

Software license is a legal instrument that defines rules of software usage,
modification and distribution

Different licenses allow different freedoms
* Proprietary (end-user license agreements, EULA): least permissive
* Open Source: some limitations, several combinations exist
* Public domain: basically, no license, everything is permitted

Scientific software has no common approach regarding licenses

* Large pieces of code are in a “grey zone”, having no explicit license and used
without clear rules

We like Open Source licenses because they allow free code usage, modification
and sharing

* A number of different Open Source licenses exist (see next slide)
* Open Source software can still be sold (if anyone wants to pay)

» Software developed using public funding (as in universities) should normally
have an Open Source license

Note: documents and data also have licenses! We like Open Access ones.

Oxana Smirnova (Lund University)

Lecture2 10/ 32

Some Open Source licenses

* GPL, Apache and BSD are the most commonly used ones
* Some, like GPL, are “contagious”

* Itis up to the code owner to decide what license to h

£ - §
= > lEE S g
s > A
, o g S 5 2| £ % g §
- g Sl el 5| 3 | g B 2|8 |2
Apache B HE R R R
p Comparison of the Open | 5| 2| 2| ¢| £ g £ 8 8|« |
: 5 b5 S
Source Licences El el g2 3 8 |88z 2 |5 .
HHE R ETHE R N
The bullets mark if the the licence explicitly states the § = 3 3 E’ & § 5 t < g g p= %
item in question. Implicit items are not marked by this g § = ﬁ g g = é g S g E § %
chart g 3| 8| 2 gl 28| = = 'g s s S S
=2l 5| | «| & = 2| 8| 2 3 2| & e
2| 8| 2| 2| B| 25| & &| ¢ £2| g| @
3 S -4 gl 5| 2| 25| & 2
= T ol 5| 3| = 22l 5] S
2| | 2| § 3| g8l £ 3 gl 28| 8| °
3l Blg| & HEEE R
c [o Q
35| £ 2| | 85| = 3| 8] 2¢)3| ¢
Apache License 2.0 K BN AN BN NN J XS]
Common Development and Distribution License [] o ® §
GNU General Public License (GPL) ® [BN] ® o/ o0 o S
GNU Library General Public License (LGPL) ° eole ™ | o S
Microsoft Public License (Ms-PL) ole e
BSD Microsoft Reciprocal License (Ms-RL) [AN J [] S
Mozilla Public License 1.1 (MPL) [] [AN J L] :E
New BSD License [BN J %
The MIT License ° G

Oxana Smirnova (Lund University) Programming for Scientists Lecture2 11/ 32

Practical use of licenses

* Licenses protect (or not) both the developers and the software

* If everybody is allowed to change the code, the original author can not
guarantee its quality or features

* If nobody is allowed to change it, the author will be held responsible for all
wrongdoings

* In practice, a good balance is needed: changes should be allowed under
certain conditions

* License is implemented as a piece of text, distributed together with the software
 Some add it to every file
 If a software package has many files, license can be a separate file

Apache License
Version 2.0, January 2004
http: //www.apache .org/licenses/

TEEMS AND CONDITICMS FOR USE, REPRODUCTION, AND DISTRIBUTION

IR o e I T e L e A L
L |ra |k (2| e [[~ o o | 5w ||k o oo |~ o | o [| e

Oxana Smirnova (Lund University) Programming for Scientists

Lecture2 12 /32

When you’re not the lone developer

* When your code grows big, it is always good to split it into separate files
* A program is one algorithm (rarely a few)

* Software is a collection of various algorithms that work together

* Large softwares consist of many files and are usually developed by several

people

How to ensure
synchronisation?

How to avoid clashes?

Use revision control
systems

How to handle
ownership and licenses?

Make an agreement
with colleagues

Oxana Smirnova (Lund University) Programming for Scientists

Lecture 2

13 / 32

Example of a complex software with many authors

source: arcl1 / trunk

LasL wanyges

RIS Loy

View revision:

View diff against:

Name ~ Size Rewv Age Author Last Change
./

b _] debian 29030 3 months | /DC=org/DC=terena/DC=tcs/C=5E/O=Uppsala University/CN=Mattias Ellert mel03009 Add missing tildes
b _]include 29005 /DC=org/DC=balticgrid/OU=aitecs.com/CN=Aleksandr Konstantinowv Adding header fo
b java 28113 /DC=org/DC=terena/DC=tcs/C=5E/O=Uppsala University/CN=Mattias Ellert mel03009 Fix tests with autd
b1 ma 27852 fO=Grid/0O=NorduGrid/QU=nbi.dk/CN=Anders Waananen Remove libarcdb:
1 nsis 23684 9 months | /O=Grid/O=NorduGrid/OU=nbi.dk/CN=Anders Waananen Fix Windows pach
| po 29026 3 months | /DC=org/DC=terena/DC=tcs/C=5E/O=Lunds Universitet/CN=0xana Smirnova quar-osm = Synchronised Rus
b 1 python 28571 9 months | /DC=org/DC=terena/DC=tcs/C=DK/O=ku.dk/CN=Martin Skou Andersen 205059 Swig 2.0.12 uses
P selinux 21262 4 years /DC=org/DC=terena/DC=tcs/C=5E/0O=Uppsala University/CN=Mattias Ellert mel03009 Integrate SELinu
b src 29142 5 days /C=HU/O=NIIF CA/OU=GRID/OU=NIIF/CN=Gabor Roczei Adding Computin,
[| swig 28713 8 months | /DC=org/DC=terena/DC=tcs/C=DK/O=ku.dk/CN=Martin Skou Andersen 205059 Mowe common te
= .Svnignore 254 hytes b, | 28113 14 months | /DC=org/DC=terena/DC=tcs/C=5E/O=Uppsala University/CN=Mattias Ellert mel03009 Fix tests with autg
H arc-uncrustify.cfg 3.0KB &, 22484 3 years /DC=org/DC=terena/DC=tcs/C=5E/O=Uppsala University/CN=Mattias Ellert mel03009 Change mod_full
=] arc.nsi 4.9 KB o, 25907 2 years fO=Grid/0O=NorduGrid/OU=uio.no/CN=Aleksandr Konstantinowv Making infosys lib
H arcbase.pc.in 316 bytes &, 13347 5 years f0=Grid/O=Nordugrid/OU=hep.lu.se{CN=Ferenc Szalai add pkag-config ds
=| AUTHORS 2.3 KB ¥, 28303 7 months | /DC=org/DC=terena/DC=tcs/C=5E/O=Lunds Universitet/CN=0xana Smirnova quar-osm = Adding two new g
_] autoclean.sh 1.1 KB &, 20222 4 years f0=Grid/0=NorduGrid/QOU=nbi.dk/CN=Anders Waananen Add script to clea
& autogen.sh 965 bytes o, | 14778 5 years /0=Grid/O=NorduGrid/OU=fysast.uu.se/CN=Mattias Ellert Get rid of GPL ref]
= ChangelLog 23.6 KB o+, 29143 5 days fC=HU/O=NIIF CA/OU=GRID/OU=NIIF/CN=Gabor Roczei adding #29142 cd
= configure.ac 97.3 KB o, 29088 2 months | /DC=org/DC=terena/DC=tcs/C=5E/O=Uppsala University/CN=Mattias Ellert mel03009 Fix sed expressio

Oxana Smirnova

(Lund University)

Programming

Scientists

Revision control systems

* Revisionin our context stands for an updated piece of code (or several pieces)

* Since several developers may update different pieces of code simultaneously, a
system is needed to keep everything synchronised and to avoid clashes

* Sometimes bad updates need to be reverted, too — previous revisions need to be
kept
* When a software is ready to be used, it has to be tagged, for reference

* Atagis basically a snapshot of all the code, labelled by a number or a special
string

* Tags are a good reference point for testing
* When tested and proven to work as expected, a tag is released as a new
software version
* Therefore, the main functionalities of such common development systems are:
» Reference software repository (“master copy”)
* Accepting changes (commits) from different developers
* Revision history (“backup” of files)
* Versioning

Oxana Smirnova (Lund University)

Lecture2 15/ 32

Few words on software versions

» Software changes very often, so it is important to know what exact code was
used

* Primarily, to make results reproducible
* Butalso to simplify maintenance, debugging, user support etc

* Most code developed by students has no versions — very bad practice!

* Some examples of versions:

* Operating systems: Windows 8.1, iOS 8.0, Ubuntu 15.10 “Wily Werewolf”,
Android 4.4 “KitKat”, Fedora 20 “Heisenbug”

» Software: ROOTv6.02/02, gcc4.9.2, Photoshop €S5.5, Office 2013, Linux
kernel 3.16
* In the Linux world, most common versioning scheme is MM.mm.bb

* MM — major version with massive changes; usually backwards incompatible
with MM-1

* mm— minor version with some new functionality; versions MM.mm and
MM.mm-1 are usually compatible

* bb — bugfix version, always compatible with MM.mm.bb-1

Oxana Smirnova (Lund University) Programming for Scientists

Lecture2 16 / 32

General principles of work with revision control systems

* There is a code repository, from which software releases are made
* Repository can be centralised or distributed

* Each developer makes — checkout —an own working copy of the repository
* Many systems allow to check out only a part of the entire repository

» After doing local code changes, the developer uploads — commit—the change to
the repository

* In most systems, only the differences are communicated to the repository
* Itis a good practice to commit often, avoid mega-commits
* If the system notices that the code has changed meanwhile, it will try to merge
the changes, if they were committed to different parts of the code

* Beware! The changes may still turn out to be incompatible, no systemiis
clever enough to figure it

 If automatic merging is impossible, a conflict will be reported, and commit
will fail

 Commits can be reverted to any previous revision if it turns out they caused
troubles

* Release manager can decide which commits should be accepted for the software
release

Oxana Smirnova (Lund University) Programming for Scientists Lecture2 17 /32

Traditional approach: central code repository

* Astraightforward approach is to have one central repository

* A trunk would contain the main reference code, and branches would contain
specialised/private develooments

MName Size Rev Age Author |
o
< _] branches 29096 ¢ 7 weeks | /DC=org/DC=terena/DC=tcs/C=5E/O=Uppsala Univer.
P 1 arc_trunk_bdiis 17248 ¢ 5 years | /O=Grid/O=NorduGrid/OU=nsc.liu.se/CN=Daniel Johan
b _] compat 29096 ¢ 7 weeks | /DC=org/DC=terena/DC=tcs/C=5E/O=Uppsala Univer.
E\ b 1 janitor 12565 ¢% 6 years | /O=GermanGrid/OU=UniLuebeck/CN=Hajo Nils Krabber
_-lg b jss 4642 4% O years | anonymous
8 b v _0_2 316 ¢ 12 years | aleks
§ P Jv_0_4 4659 ¢ 9 years | aleks
[\9) P Jv_0_6 12819 ¢ 6 years | /O=Grid/O=NorduGrid/OU=fys.uio.no/CN=Adrian Taga
§ b Jdv_0_8 177141 ¢ S years | /O=Grid/O=NorduGrid/OU=Ffys.uio.no/CN=Adrian Taga
Q‘: b Jv 0811 16791 &% S years | /O=Grid/O=NorduGrid/OU=nsc.liu.se/CN=Daniel Johan
uo-) P Jv_0_8_2 18196 ¢ 4 years | /O=Grid/O=NorduGrid/OU=nsc.liu.se/CN=Daniel Johan
g P Jv_0_8_ 3 20021 & 4 years | /C=HU/O=NIIF CA/OU=GRID/OU=NIIF/CN=Ivan Marto
< b _] tags 24575 ¢ 3 years | /O=Grid/O=NorduGrid/OU=nbi.dk/CN=Anders Waanan
g b trunk 20022 &5 4 years | /C=HU/O=NIIF CA/OU=GRID/OU=NIIF/CN=Ivan Marto

—

Plus Minus

e Easy to controland manage * No general agreement how to

e Easy to prevent conflicts deal with branches

e Each developer makes a eSingle point of failure if the
checkout of only the code they | server goes down (or is slow)
need

Oxana Smirnova (Lund University) Programming for Scientists Lecture 2 18 / 32

Modern approach: distributed repository

* Every developer has a local copy of the entire repository
e Can commit off-line and synchronise later
* Allows for frequent commits, hence better revision control

tags

4 days ago vB-0202 tag | commit | shortiog | log

4 days ago vB-03-01-GEANT tag | commit | shortiog | log

3 weeks ago v5-34-23 tag | commit | shortiog | log

6 weeks ago v6-02-01 Tag patch release v6.02/01. t=g | commit | shorticg | log

7 weeks ago v5-34-22 tag | commit | shortlog | log

2 months ago v6-02-00 Release ROOT v6.02/00 tag | commit | shortlog | leg

2 months ago v6-02-00-rc1 Tag first release candidate for... tag | commit | shortiog | log

2 months ago v5-34-21 New tag for va_34/21 tag | commit | shortiog | log

3 months age v5-34-20 tag | commit | shortiog | log

4 months ago v5-34-19 tag | commit | shortiog | log

4 months ago v6-01-03-CMS | commit | shortlog | log

4 months ago v6-00-02 Tag version 6.00.02 tag | commit | shortiog | log

5 months ago v6-00-01 Tag v6.00.01 patch release. tag | commit | shortiog | log
> 6 months ago v6-00-00 tag version v6-00-00 tag | commit | shortiog | log
8 7 months ago v5-99-06 ROOT 6 beta 3 (the nearing the... =g | commit | shortiog | log
g 8 months ago v5-99-05-lhch Tag for the large scale tests of... t=0 | commit | shortiog | log
o
; heads
S
g 29 hours ago master shortlog | log | tree PI u S M I n U S
&£ 2 days ago v6-02-00-patches shortieg | log | tree . . .
S Sdaysago v534.00.patches shrosbslee e Distributed * Have to keep entire
I~ 4 months ago RGitCommit shortiog | log | tree .
8 18 months ago v5-32-00-patches shortleg | log | tres development repos Ito ry Ioca"y
o fyears ago vH-28-00-patches shortiog | log | tree) Very fa st [Ca n not IOCk flleS

e Easy and quick to * Non-trivial access
branch and merge control
code

Oxana Smirnova (Lund University) Programming for Scientists Lecture2 19 /32

Most popular revision control systems

e Subversion (SVN): a centralised
system

* One of the most commonly used
systems

* Release 1.0.0in 2004
* Open Source (Apache)

* Branches retain no knowledge
of the trunk

* Allows authorisation per
directory

* Well documented, O’Reilly book
is online for free:
http://svnbook.red-bean.com/

I\

SUBVERSION

Oxana Smirnova (Lund University)

e Git: a distributed system

Programming for Scientists

Developed by Linus Torvalds in
2005 when the other system he
was using fell victim to copyright
battles

Open Source (GPL/LGPL)

Each local copy is a complete
repository, with all the revision
history and such

Light-weight easy to merge
branches

No own access control

Git book also exists: http://git-
scm.com/book

@O git

Lecture2 20/ 32

http://svnbook.red-bean.com/
http://git-scm.com/book

Integrated Development Environment (IDE)

* For non-professional developers, a good editor and command-line build tools is
enough to write and build software

* Warning: avoid building in your SVN/Git working copy! This may create many
files that you don’t want to commit!
* For professionals, special IDEs exist, that include:
* Context-aware software editor
e Build automation tools
* Some include compilers and interpreters
* Debugging tools
* Some integrate with revision control systems

* Very many IDEs exist for C++
* There are no good IDEs for Linux (they are not really needed there)
* Geany is actually a light-weight IDE
 Some even use Emacs editor as an IDE
* Eclipseis one of the most powerful and complicated
* On Windows, Microsoft Visual Studio is the best

Oxana Smirnova (Lund University) Programming for Scientists

Lecture2 21/ 32

Eclipse screenshot

b Java - ffmpeg/ffserver.c - Eclipse SDK
File Edit Source Refactor Navigate Search Project Bun Window Help
B -

|'r3- |50 |HG | @me®e v | 48

«
@
x

% Package Explorer &2 = O || [gl ffserver.c 2 = 0O || 5= outline &2 =0
=e for (s = first_stream; s; s = s-=next] { o a 5 o -
= if (!strcmp(stream-=filename, s-=filename)) { B NN *
ERROR("Stream '%s' already registered\n", s-=filename); = 1 config.h =
b = doc } o # closesocket
b = ffpresets _ - M string.h
. stream->fmt = ffser'\.rer guess_format (NULL, stream->filename, NULL .

b = libaveodec ¥)l A1 stdlib.h

b 5= libavdevice avcadec get_context. defaultsE(&audlo enc, AVMEDIA TYPE AUDIO); = u libavformat/avform

b= libavfilter audio_id = CODEC_ID_NONE; = U libavformat/ffm.h

b 5= libavformat video_id = CODEC_ID_NONE; 4 libavformat/networl
5'5_ _ if (stream-=fmt) { = -) !

b 5= libavutil audio_id = stream->fmt-=audio_codec; = U libavformat/os_sup

b = libpostproc video_id = stream->fmt->video_codec; =) U libavformat/rtpdec.

=

b (= libswresample =2 U libavformatfrtsp h

. *last_stream = stream; = g i o i
b = libswscale last Stream = Gstream =next; = 1l libavformat/avio_ini
b= mt-work U libavutilfavstring.h
} else if (!av_strcasecmplcmd, "Feed")) { - .
b (= presets get arglarg, sizeof{arg), &p); - U libavutilfifg.h
b = tests 1f (stream) { U libavutilidict.h
* .

b =tools FRStream *sfeed; U libavutil/mathemati
avcony [[s 2020 W
avconv_g = Problemns (@ Javadoc ﬂ% Declaraticnw 4 [i NE [= E- % =0
dgl aveonv.e CDT Build Console [ffmpeg]

E avconv.d ffserver.c:3454:13: warning: ‘url_close’ 1s deprecated (declared at libavformat/avio.h:224) [-Wdeprecated-
declarations]
o aveonv.o ffserver.c: In function ‘add_av_streaml”:
2| Changelog ffserver.c:3491:5: warning: ‘av_set_pts_info’ is deprecated (declared at libavformat/avformat.h:1668) [-
. wWdeprecated-declarations]
(g crndutils_common_opts.h ffserver.c: In function ‘parse ffconfig’:
[endutils.c ffserver.c:4236:17: warning: ‘avcodec_get context defaults2” 1s deprecated (declared at ./libavcodec/
dutils.d a\.rn_oden_.h.Bgl;}l [-Wdeprecated-declarations]
cmalitis. ffserver.c:4237:17: warning: ‘avcodec_get_context defaults2’ 1s deprecated (declared at ./libavcodecy/
[cmdutils.h avcodec.h:3917) [-Wdeprecated-declarations]
crmdutils o LD ffserver_g
J ' CP ffserver
cormmon.mak STRIP ffserver
(8 config.asm worrr Build Finished #oer
=l confia.fate E

o

Oxana Smirnova (Lund University) Programming Scientists

There is no code without bugs

Oxana Smirnova (Lund University) Programming for Scientists

With an Open Source code, everybody can find a bug... or many...

So we need a system where bugs can be reported and followed-up: a bug
tracking system

Such system is essentially a database where every authorised person can register
a discovered defect
Typical information to be entered:

 Summary of the problem and ways to reproduce it

» Software version that has the problem

e Operating system version where the problem occurs

* Severity of the problem

Bugs have life cycle: from being new, to assigned, to fixed
* Different systems have different such states
 States are changed by administratorsin charge of bug tracking
* E-mail notifications are sent to all the involved parties (reporters,
developers etc) on each state change

When you find a bug, please always reportit!

Lecture2 23 /32

Bug tracking systems

* Many bug tracking systems exist « Bugzilla (standalone),
http://www.bugzilla.org/
* Some are Stand'alone * JIRA (project management tool),

* Some are integrated with revision control N N S Y B

e Savannah (development service),

systems http://savannah.gnu.org/

* Some are even distributed . T;ft; F}?{fagcraetjsevvvv‘atn ‘g;k/')

— Some commonly used bug trackers:

* Some are integrated with IDEs » Redmine (project management),

 Some are a part of larger issue-tracking
systems

http://www.redmine.org/

HRL

Bugzilla — Bug List

Home | New | Browse | Search | Search | [?] | Reports | Help | New Account | Log In | Forgot Password

Sun Nov 30 2014 22:47:43 CET
Any program that runs right is obsolete
Hide Search Description

S
E Resolution: --- Component: ARClib Product: NorduGrid ARC
N
g’ 13 bugs found.
] ID A Product Comp Assignee Status Resolution Summa Changed
P g ry g
% T e AR S PEE] rI_Irgstu:gS:_lednt client error messages when job information is TR oYon
<
Q
S 868 NorduGri ARClib skou ASSI Incorrect error message from arcsub when queue 2012-08-16
3 information is unavailable
B 1951 NorduGri ARClb waananen ASSI --- Outdated CRLs render all client tools useless 2014-04-22
= 2787 NorduGri ARClib skou ASSI --- feature request for updating status of ExecutionTargets 2013-03-27
5]
S 2874 NorduGri ARClib akonstantinov ASSI --- arcsub cannot parse a simple JSDL file on Windows 2013-10-21
"6. 2890 NorduGri ARClib skou ASSI --- should not treat "executable" as a local input file 2012-08-08
+ . igrate d t tob ki d ibed i
1) 2977 NorduGri ARClib skou ASSI el C coss not seem fo be Working as CesarBEC T 2013-10-08
<
g 3099 NorduGri ARClib skou ASSI --- bulk operations including queries for EMI-ES 2013-10-23
3] . L o .
. . M leak d Itiple job sub th files t
L 3190 NorduGri ARCIb akonstantinov ASSI ppa o £on NG MUTpie Job stbmission WER e 50 2013-10-08
Q
%) . . .
- : - ncer Inconsistent ComputingService Name between gridftp and 1A (1A

Oxana Smirnova (Lund University) Programming for Scientists Lecture 2 24 /32

http://www.bugzilla.org/
https://www.atlassian.com/software/jira
http://savannah.gnu.org/
http://trac.edgewall.org/
http://www.redmine.org/

Software development hosting services

 If you start a new software project and don’t want to set up an own code
repository, Wiki, bug tracker etc, several free Open Source hosting services exist

Sourceforge, : a veteran
service (launched in 1999), interfaces to SVN, Git
and other revision control systems

GitHub, :the newest and largest

IT-project hosting service (started in 2008), based on
Git (obviously); free for Open Source projects

Google Code, : started in
2005, offers Git, SVN and Mercurial revision control
systems

* Some other hosting services: RubyForge, Tigris.org, BountySource, Launchpad,
BerliOS, JavaForge, GNU Savannah, Gitorious

Oxana Smirnova (Lund University) Programming for Scientists

http://sourceforge.net/
https://github.com/
http://code.google.com/

Simplest languages: markup languages

* Markup languages add special tags to plain text
* These tags will be processed and interpreted by software
e Tags must be distinguishable from normal text

* An example of a markup language at work you see every day in Web pages
* Did you ever try to click “show source code” on a Web page?
* If yes, you probably noted <!DOCTYPE html in the very beginning
e HTML stands for HyperText Markup Language

* Was developed at CERN, inspired by an earlier SGML (Standard Generalized
Markup Language)

Edit This Code: See Result » Result:

<!1DOCTYPE html:
<html>

Document Title

<body>»
<hl>Document Title</hl> First paragraph.
<p>First paragraph.</p> Here 1s some bold text

And this 1s a non-monbered list:

Here is some <b»bold text</br<br»
e First item

And this is a <i»non-numbered</i> list:
<uls
<li»First item</li»
<li»Second item</lix
<ful>

& Second item

</body>
</html>

Try it Yourself - © w3schools.com

Oxana Smirnova (Lund University) Programming for Scientists

Lecture2 26 / 32

Usage of markup languages for text processing; LaTeX

* Once your results are ready, it is time to publish!
* Orto write a project report

» Softwares that make your papers looking good are called word processors
* All good word processors cost money (like Microsoft Office)
* All free word processors are desperately bad (like LibreOffice)

* What do word processors do under the hood?

* They make use of different markup languages to add special tags to your
text and figures, and convert them to a visually pleasant layout (hopefully)

e LaTeX is a markup language for word processing, with which you add the tags
yourself, and LaTeX system converts it to a publishable material

e N -

“Plus Minus
e |tis free * You don’t see the result “live”
e |t supports most complex mathematics e Tables and figures are very difficult to pin into
o Itis extensible place
e Itis accepted by all publishers * No way to track changes (unless you use a

revision control system)

Oxana Smirnova (Lund University) Programming for Scientists Lecture 2 27 / 32

So what is LaTeX?

* Actually, the language itself is called TeX
* TeX was released in 1978, designed by Donald Knuth in Stanford

* The goal was to create a complete typesetting system that would produce
identical results on any computer

* Hence the markup language: plain text can be transferred everywhere

e Stable since 1989, when support for non-English languages was added to
TeX 3.0

» Software version is currently 3.14159265 (guess the next version....)
* Public domain software

e Some basic TeX rules:

* TeX tags (commands) start with a backslash \ and use curly brackets {} to
group command input

* Simple mathematics is included in $$

e $\sqrt{2}$ resultsin /2
* Paragraphs are separated by blank lines
e Comments start with %

Oxana Smirnova (Lund University) Programming for Scientists

Lecture2 28 /32

From TeX to LaleX

* Plain TeX uses elementary instructions and is rather difficult to learn and use for
complex documents

* Leslie Lamport developed LaTeX in 1984 using TeX, to provide a higher-level
language

* Added pre-defined commands for sections, cross-references, bibliography
etc

* Easyto use with non-Latin scripts
e Current version: LaTeX2¢€ (since 1994)

‘documentclass[adpaper]{article} DO Cument Title

begin{document }

“section®*{Document Title} First paraﬂ'raph
[] i’ 'D r .

Here 1s some bold text

Here is some “textbf{bold} text'' / o o _ . rate
And this i 2 Stexcic{non-nunberedd 1ist= And this i1s a non-numbered list:

‘begin{itemize}
Yitem First item

First paragraph.

\item second item e First item
wend{itemize]
\ end{ document} e Second item

LaTeX example produced with the help of https://www.writelatex.com

Oxana Smirnova (Lund University) Programming for Scientists Lecture2 29 /32

https://www.writelatex.com/

More LaTeX features

e Can do almost all imaginable formatting, section numbering, headers and
footers, lists etc

* Note: (La)TeX uses own fonts, not system ones
* This ensures identical results everywhere

Is very good with equations \begin{equation}

Caninclude figures \begin{figure}
\includegraphics{cat. jpg}

Can create tables \begin{table}
\begin{tabular}

Handles cross references \label{sec:intro}
\ref{sec:intro}

Handles bibliography \begin{thebibliography}
\bibitem{mybook}
\cite{mybook}

Caninclude other files \input{section2. tex}
\include{appendix. tex}

Can auto-generate table of contents etc \tableofcontents

Can even do nice slides \documentclass{beamer}

Oxana Smirnova (Lund University) Programming for Scientists

Lecture2 30/ 32

Steps to create a LaTeX document

e Writing a LaTeX document is similar to real software development:

Edit the text filesand Pre-process the files Create thefinal
the bibliography P publishable document

* You can use Linux command line, any of Windows IDEs (TeXnicCenter is good), or
one of the many online LaTeX systems

* There is also software called LyX, which is based on LaTeX and produces “live”
visual result

* Beware that LyX files are a heavy extension of LaTeX, and can not be used
without LyX (not portable!)

Oxana Smirnova (Lund University) Programming for Scientists Lecture2 31/ 32

Summary

e Software development is a profession and requires professional tools

* Open Source code drives the technological and scientific progress

* “Language” can mean many things: a programming language, a visual modelling
language, a markup language...

e ...and actually many other languages

Oxana Smirnova (Lund University) Programming for Scientists Lecture 2 32 /32

