
Introduction to Programming and Computing
for Scientists (2015 HT)

Tutorial-4a: Parallel (multi-cpu) Computing

HTTP://WWW.HEP.LU.SE/COURSES/MNXB01

Programming for ScientistsBalazs Konya (Lund University) Tutorial4a 1 / 16

Outline
• Parallel computing in a nutshell:

• motivation, terminology, solutions

• Howto ride on ”big iron”:

• Login to remote computers

• The practical basics of working with batch systems

• Multi-task jobs

Programming for ScientistsBalazs Konya (Lund University)

http://arstechnica.com/information-technology/2013/07/creating-a-99-parallel-computing-machine-is-just-as-hard-as-it-sounds

Tutorial4a 2 / 16

What is parallel computing?
• Traditional computing: serial execution of a

single stream of instructions on a single
processing element

• Parallel computing: simultaneous execution
of stream(s) of instructions on multiple
processing elements

• Non-sequantial execution of a
computational task

• (part of) the problem solved by
simultaneous subtasks (processes)

• Relies on the assumption that problems
can be divided (decomposed) into smaller
ideally independent ones that can be
solved parallel

Balazs Konya (Lund University) Programming for Scientists Tutorial4a 3 / 16

What is parallel computing?
• Parallelism levels (”distance” among the processing elements):

• Bit and Instruction level: inside the processors (e.g. 64 bits
processor can execute 2 32 bits operations)

• Multicore/multi cpu level: inside the same chip/computer. The
processing elements share the memory, system bus and OS.

• Network-connected computers: clusters, distributed computing.
Each processing element has its own memory space, OS,
application software and data

• Huge difference depending on the interconnects: e.g. High
Performance Computing (supercomputers) vs. High
Throughput Computing (seti@home)

Balazs Konya (Lund University) Programming for Scientists Tutorial4a 4 / 16

Some classifications
Flynn’s taxonomy:

• SISD: sequential ”normal” programs

• MIMD: most of the parallel programs

• SIMD: data chewing by the same algorithm

• MISD: rarely exists

SMP vs. MPP (or the shared memory vs. distributed memory
debate):

• SMP: Symmetric Multi Processors system: shared memory
approach

• ”single box” machines, OpenMP programming family

• MPP: Massively Parallel Processors system: distributed memory,
network-connected CPUs

• ”clusters”, MPI programming family (message passing)

• SMPs are easier to program but scale worse than the MPPs

Balazs Konya (Lund University) Programming for Scientists

Single Instruction Multiple Instruction

Single Data SISD MISD

Multiple Data SIMD MIMD

Tutorial4a 5 / 16

Why parallel computing?
• It is cool

• Sometimes the problem does not fit into a single box: you
need more resources than you can get from a single
computer

• To obtain at least 10 times more power than is available
on your desktop

• To get exceptional performance from computers

• To be couple of years ahead of what is possible by the
current (hardware) technology

• The frequency scaling approach to increase performance
does not work any longer (power consumption issues):

• The new approach is to stuff more and more
processing units into machines, introducing
parallelism everywhere

Programming for ScientistsBalazs Konya (Lund University) Tutorial4a 6 / 16

Measuring performance gain: the Speedup
• In an ideal scenario a program running on P processing

elements would execute P times faster..., giving us a linear
speadup

• Speedup S(n,P): ratio of execution time of the program on a
single processor (T1) and execution time of the parallel
version of the program on P processors (TP):

• In practice, the performance gain depends on the way
the problem was divided among the processing
elements and the system characteristics.

• Amdahl’s law: gives an upper estimate for maximum
theoretical speedup and states that it is limited by the non-
parallelized part of the code:

• alpha is the sequential fraction of the program

• e.g. if 10% of the code is non-parallizable, then the
maximum speedup is limited by 10, independent of the
number of used processors (!)

Balazs Konya (Lund University) Programming for Scientists

source: wikipedia

Tutorial4a 7 / 16

The dark side
”the bearing of a child takes nine months, no matter how many women are assigned”

• Not everything is suitable for parallelization

• Complexity increases as more and more communication is involved:

• embarrasingly paralell -> course-grained -> fine-grained problem domains

• Parallel computing opens up new set of problems:

• Communication overheads

• Concurrency problems

• Synchronization delays

• Race conditions and dead locks

• Nobody wants to debug a parallel code...

• Developing & deploying a parallel code usually consume more time than the
expected speedup

• A practical advice for parallelization:

• Unless you have an embarrasingly parallel problem, forget it

• If you are stubborn, then at least use an available parallel (numerical) library and
start with the profiling (understanding) of your program

• Wait for the holy grail of computational science: automatic parallelization by
compilers ☺

Balazs Konya (Lund University) Programming for Scientists Tutorial4a 8 / 16

Accessing remote computers
• Secure Shell (SSH) is a secure way of accessing

remote computers, executing commands
remotely or moving data between computers.

• All network traffic is encrypted

• The de-facto protocol for remote login &
computer access

• Available on non-linux platforms too (putty
and winscp on windows)

• SSH servers are listening to incomming
connections on the standard TCP 22 port

• Login is done with username/passwd or
using keypairs (advanced topic)

Exercise 1: use the Linux ssh and scp commands:

• remote computer: pptest-iridium.lunarc.lu.se

• ssh remote_user@machine –X

• scp localfile user@machine:remote_dir

Balazs Konya (Lund University) Programming for Scientists Tutorial4a 9 / 16

Working on a remote computer: screen
IMAGINE that:

• You are being logged on a remote computer

• In the middle of a long task (e.g. compilation, download, etc..)

• Then, suddenly the network connection dies

• or you’d like to go home and continue the same work from your home desktop

Is there a way to avoid loosing all your work? How can one disconnect & reconnect
to the same ”session” without the need to restart everything from scratch?

SOLUTION: use the screen! The utility that allows you to:

• Keep a session active even through network disruptions

• Disconnect and re-connect to a sessions from multiple locations (computers)

• Run a long remote running process without maintaining an active remote login
session

Balazs Konya (Lund University) Programming for Scientists Tutorial4a 10 / 16

Working on a remote computer: screen
Exercise 2: use the Linux screen utility to manage remote screen sessions, connect,
reconnect to active session, survive a network failure ☺

• Screen is started from the command line just like any other command

• [iridium ~]$: screen

• You can create new “windows” inside screen, ctr+a c then rotate, switch
between windows with ctrl+a n

• Listing your screens:

• [iridium ~]$: screen -list

• Disconnecting from your active session, screen (your task keeps running!):

• [iridium ~]$: screen –d or ctrl+a d

• Re-connecting to an active screen session (re-attach to screen):

• [iridium ~]$: screen –r

• Terminating, logging out of screen

• type exit from inside all your active screen sessions

• Using screen to log your activity:

• [iridium ~]$: screen –L or ctrl+a H turns on/off logging during a screen session

Balazs Konya (Lund University) Programming for Scientists Tutorial4a 11 / 16

Working with a cluster
Goal: understand basic concepts of a cluster, Workload Management system,
queue, jobs

• Cluster: Iridium cluster at LUNARC

• Frontend: pptest-iridium.lunarc.lu.se

• Batch system: SLURM

Exercise 3:

• Look around on the front-end (e.g. inspect CPU and memory details):

• cat /proc/cpuinfo; cat /proc/meminfo; top

• who, pwd

• Check man pages for SLURM commands:

• sbatch, sinfo, squeue, scontrol, scancel

Balazs Konya (Lund University) Programming for Scientists Tutorial4a 12 / 16

Working with a cluster
Exercise 4: simple jobs with SLURM

• List SLURM queues (partitions)

• > sinfo

• Create file myscript (use provided
examples)

• Submit simple jobs and check their status:

• > sbatch myscript

• > cat slurm-<jobid>.out

• > squeue

• > scontrol show job <jobid>

• Repeat with multi core/node jobs

• sbatch –N4 myscript

• sbatch –n6 myscript

• In a multi-core advanced example, pay attention
how jobs are distributed across nodes and cores

Balazs Konya (Lund University) Programming for Scientists

Simple myscript :

#!/bin/sh
#SBATCH -J “simple job”
#SBATCH --time=1
echo “we are on the node”
hostname
who
sleep 2m

Multicore/node myscript :

#!/bin/sh
#SBATCH -J “multi job”
#SBATCH --time=1
srun hostname |sort
sleep 5m

Tutorial4a 13 / 16

Working with a cluster: task farming
Exercise 5:

• With a help of a master script you are going to execute X number of subtasks on
Y number of processing units

• The master script (master.sh) takes care of launching (new) subtasks as soon as a
processing element becomes available

• The worker.sh script imitates a payload execution that corresponds to a subtask

Steps:

1. Download, copy the scripts to a new directory on pp-test-iridium

2. Set the problem size (NB_of_subtasks) and the number of processing elements
(#SBATCH -n) in the master.sh, the payload size (i.e. How long a subtask runs)
in the worker.sh

3. Launch the taskfarm (sbatch master.sh), monitor the execution of the subtasks
(squeue –j <jobid> -s) and finally check how much time the taskfarm
processing required (check the output files of the subtasks and the slurm job)

4. Repeat the taskfarming with modified parameters, What is the speedup?

Balazs Konya (Lund University) Programming for Scientists Tutorial4a 14 / 16

Further reading

• Introduction Parallel computing (by Lawrence Livermore National Laboratory)

• https://computing.llnl.gov/tutorials/parallel_comp/

• most of the images are taken from this tutorial

• SLURM:

• https://computing.llnl.gov/linux/slurm/quickstart.html

Programming for ScientistsBalazs Konya (Lund University) Tutorial4a 15 / 16

Homework 4a
• Prepare and execute a simple workflow on the iridium cluster as a batch job

• Prepare:

• The workflow should be a series linux commands (e.g. ls, mkdir, cd,
pwd, cat, ...)

• Should contain a few minutes ”sleep”

• Save the workflow as SLURM job descripton in a file homework7a.sh

• Execute:

• Submit several jobs with sbatch

• List the queue status

• List the job status

• Cancell some of the jobs

• Record your session on iridium using the logging feature of screen:

• Login to iridium with ssh

• Edit your homework4a.sh SLURM script

• Then, start up a screen session with logging enabled: screen –L

• Execute all the slurm commands, then exit screen

• Send the screenlog.0 and the SLURM script as the solution of the homework

Balazs Konya (Lund University) Programming for Scientists Tutorial4a 16 / 16

