
Introduction to Programming and Computing for
Scientists

Oxana Smirnova

Lund University

Lecture 7

Oxana Smirnova (Lund University) Programming for Scientists Lecture 7 1 / 43

Data analysis
• Scientific research is always

about data analysis

• Analysis is usually about finding
patterns

• Galaxies

• Hurricanes

• Particle tracks

• Effects and phenomenae

• Example: Higgs boson decay into
two photons

• Patterns:

• particle tracks (curved
lines)

• vertices (origin of
tracks)

• clusters of energy
depositions

Oxana Smirnova (Lund University) Programming for Scientists Lecture 7 2 / 43

Statistical analysis
• When a pattern is found, its characteristics must be quantified

• Example: hundreds of Higgs to two photons decays

• Most photon pairs are false positives – don’t come from Higgs

• Real signal must be extracted

• Position of the peak (Higgs mass) must be measured

Oxana Smirnova (Lund University) Programming for Scientists Lecture 7 3 / 43

Statistical methods
• Statistics is used to analyze data that have probabilistic nature and/or have

random variations
• Even several measurements of the same object with the same tool bring

varying results, so statistics is needed to deduce the measured value and
standard deviation

• Statistic can be either descriptive (as in the example above), or inferential
(hypothesis testing)

• Statistical methods are used to find patterns and to quantify the results
• In the Higgs example, statistical analysis is used to, for example:

• Identify location of the signals left by particles
• Reconstruct track patterns from detected signals
• Reconstruct vertices from tracks
• Assign energy and momentum to tracks
• Quantify position and width of the observed peak
• Test hypothesis that the observed peak is consistent with the Higgs

boson

• We need software tools to do all this analysis!

Oxana Smirnova (Lund University) Programming for Scientists Lecture 7 4 / 43

Histograms
• Histograms are an important tool of statistical data analysis

• Much more than just a graphical representation of data

• Histograms record frequency of measurements in defined ranges (bins)

• Histograms are initially empty arrays, where a value of an element increments by
1 (or by an assigned weight) if the measurement belongs to a discrete bin
associated with this element

• Example: measurements of people’s age are collected in a histogram with
100 bins, each bin is 1 year. If a person’s age is 19, the 19th bin is
incremented by 1

• Bins can be non-equidistant: e.g., one bin can accommodate ages 50-100

• Histograms can be 2-dimensional: for example, weight versus height

• More dimensions are impossible to visualise…

• When histogram filling is complete, each bin will contain a value, statistical error
of which can be calculated from the number of entries in this bin and the weight
of each entry (simply square root of number of entries if the weight is 1)

• A filled histogram with errors is practically identical to a graph

Oxana Smirnova (Lund University) Programming for Scientists Lecture 7 5 / 43

Example: a histogram in Excel

• Note 5 bin margins and 4 actual bins: one must specify both upper and lower
margins

• Excel is not too good with non-equidistant bins – all appear with the same
width

• Excel also doesn’t show statistical errors automatically

• But of course, better analysis frameworks exist!

Oxana Smirnova (Lund University) Programming for Scientists Lecture 7 6 / 43

Fitting histograms
• Most measured distributions can be described by a theoretical function with

several parameters
• Simplest: straight line, has 2 parameters:
• Gaussian is another example, has 3 parameters:

• Finding values of the parameters (and their errors) is the main goal of many
analyses

• The process of finding parameters that describe the data best is called fitting
• When parameters are good, the theory fits the data

• Several standard fitting algorithms exist. General approach is:
• With initial parameters, calculate data to function “distance”
• Change parameters step by step in order to minimize the “distance”

• Algorithms of this minimization can be different
• “Distance” depends on errors: with large errors, any function will fit
• “Distance” can be estimated differently by different algorithms; most

commonly used is the chi-square per degree of freedom test
• Degrees of freedom depend on number of data points and free

parameters:

Oxana Smirnova (Lund University) Programming for Scientists

2
3

2
2 2/)(

1)(
PPx

ePxF




xPPxF 21)(

paramdata NNndf 

Lecture 7 7 / 43

Example of a Gaussian fit
• This histogram has 10000

measurements – “entries”

• Each bin has several entries

• This particular histogram is not
normalized: the integral is not 1

• Gaussian function here has three
parameters:

• normalization constant

• mean value

• width (standard deviation,
sigma)

• The value of chi-square per degree
of freedom is close to 1 – a very
good fit

• Each fit parameter has own errors

Oxana Smirnova (Lund University) Programming for Scientists

• Any good analysis framework can do fitting

Lecture 7 8 / 43

Analysis frameworks and data formats
• Frameworks hide complex details, providing simple utilities, tools and services

• Often the most complex detail to hide is the data format

• Data format in our context is a way of recording and organizing information
• Binary or alphanumeric, possibly structured as tables, columns, raws or other

record units, order of records, links between records etc etc etc
• There are almost as many data formats as there are researchers

• Some are even documented

• Different analysis frameworks are coupled to different data formats

Oxana Smirnova (Lund University) Programming for Scientists

St
ri

p
 b

o
rr

o
w

ed
 f

ro
m

 S
u

za
n

n
e

Pa
n

a
ce

k
sl

id
es

Lecture 7 9 / 43

Some data formats –examples
• Simple comma-separated

alphanumeric file (CSV)

• Common for small data sets

• In this example, data file
contains format description

• Analysis framework: any, e.g. MS
Excel

• Accelerator experiment data format

• Blocks of specified bit-length

• Information is compressed
because of large data set size

• Specialized analysis framework

Oxana Smirnova (Lund University) Programming for Scientists Lecture 7 10 / 43

Organising data: hierarchies
• Flat data format example: individual

entries

• A CSV list on the previous slide is a
typical flat data format

• Easy to understand, but difficult to
handle when it grows very big
• Scalability problem

• Hierarchical data format: groups,
objects

• Several hierarchical data formats
exist
• HDF5 – commonly used in

natural sciences
• ROOT – more powerful than

HDF5, used mostly in particle
physics

Oxana Smirnova (Lund University) Programming for Scientists

1 Men Shirt XL

2 Women Top M

3 Women Hat 58

4 Men Boots 46

Clothes

Men
Shirts

Boots

Women
Hats

Tops

Lecture 7 11 / 43

ROOT –an object-oriented analysis framework
• We will focus on ROOT – a specialized analysis framework developed at CERN

• Free and available for almost all platforms (LGPL 2.1 license)

• Relies on ROOT data format (a hierarchical database, actually)

• Has built-in C++ interpreter – you can use C++ in ROOT , like Python

• A complete ROOT tutorial normally takes several days; many such tutorials can
be found on-line

• We will give a short introduction, re-using some official slides

Oxana Smirnova (Lund University) Programming for Scientists Lecture 7 12 / 43

What is ROOT?
• The ROOT system is an object-oriented (OO) framework for large scale data

analysis (and even simulation)

• Written in C++

• Provides, among others,

• An efficient hierarchical OO database

• A C++ interpreter (CINT)

• Advanced statistical analysis (multi-dimensional histogramming, fitting,
minimization and cluster finding algorithms)

• Visualization tools

• And much, much more

• The user interacts with ROOT via a graphical user interface, the command
line or scripts

• The command and scripting language is C++ (thanks to the embedded CINT
C++ interpreter)

• Large scripts can be compiled and dynamically loaded

Oxana Smirnova (Lund University) Programming for Scientists Lecture 7 13 / 43

How to get and set up ROOT
• ROOT is absolutely free and needs no licenses

• On Ubuntu, it is available from universe repositories

• Install package root-system

• Otherwise, go to
http://root.cern.ch

and download what you need

• Current stable version is 6.xx

• Versions 5.xx are widely used, too (does not matter for simple code)

• Installation from source is for brave people: will take some time and may
produce odd error messages

• You can configure your ROOT preferences using ~/.rootrc file

• There are also scripts rootlogon.C, rootlogoff.C (executed on logon and
logoff) and rootalias.C (loaded on logon)

• History is saved in ~/.root_hist file

• Read ROOT documentation for details (or Google “ROOT getting started”)

Oxana Smirnova (Lund University) Programming for Scientists Lecture 7 14 / 43

http://root.cern.ch/

ROOT command line options

• Without options, typing root will start an interactive ROOT session

• Options are useful for non-interactive ROOT calls

• Will come back to non-interactive batch processing later

> root -/?

Usage: root [-l] [-b] [-n] [-q] [file1.C ... fileN.C]

Options:

-b : run in batch mode without graphics

-n : do not execute logon and logoff macros as specified in .rootrc

-q : exit after processing command line macro files

-l : do not show splash screen

Oxana Smirnova (Lund University) Programming for Scientists Lecture 7 15 / 43

Several ways to work with ROOT
• Type root at the command line prompt

• This starts a new “shell” from which you can work with data by using C++
instructions and scripts

• One can also launch a ROOT GUI (see next slide)

• To exit, type .q

• To run a script (e.g. a tutorial), type .x <scriptname.C>

• To load functions from a file, type .L <scriptname.C>

• To execute a regular shell command, type .! <command>

• You can also link your code with the ROOT libraries and make the ROOT classes
available in your own program

• the libraries are designed and organized to minimize dependencies

• Other relevant utilities:

• cint – a C++ interpreter that can be used independently of ROOT

• rootcint – a utility to create a class dictionary for CINT, needed for
adding your own classes to ROOT

Oxana Smirnova (Lund University) Programming for Scientists Lecture 7 16 / 43

More ROOT tricks
• If you have a script (for example, myMacro.C), you can execute it non-

interactively:

root -b -q ’myMacro.C("text")’ > myMacro.log

here -b stands for “batch” (non-interactive) and -q – for “quit after execution”

• CINT commands starting with dot (.)

• See .q .L .x and .! above

• Other useful commands:

• .? (help)

• .U (unload file loaded with .L)

• .files (show all loaded files)

• .ls (list objects, such as histograms)

• C++ instructions

• new Tbrowser (starts a graphical browser for objects)

• same as TBrowser *b = new TBrowser()

Oxana Smirnova (Lund University) Programming for Scientists Lecture 7 17 / 43

Built-in ROOT C and C++ interpreter: CINT
• Main goal: provide a framework for C and C++ “scripting” – somewhat like

Python

• As a separate software, CINT code is available under an Open Source license

• It implements about 95% of ANSI C and 90% of ANSI C++

• It is robust and complete enough to interpret itself (90000 lines of C, 5000 lines
of C++)

• Has good debugging facilities

• Has a byte code compiler

• In many cases it is faster than tcl, Perl and Python
• Large scripts can still be compiled for optimal performance

• CINT is used in ROOT:
• As command line interpreter
• As script interpreter
• To generate class dictionaries
• To generate function/method calling stubs

• In ROOT, the command line, script and programming language become the same

Oxana Smirnova (Lund University) Programming for Scientists Lecture 7 18 / 43

Simple ROOT warm-up examples

• Note that by default ROOT uses double precision

• TF1 is a ROOT class for functions of 1 variable (1-dimensional functions)

• Draw is a method of the class

• Use TAB to show all methods: root [] f1.<TAB>

Oxana Smirnova (Lund University) Programming for Scientists

root [] 35 + 89.3

(const double)1.24299999999999997e+02

root [] float x = 45.6

root [] float y = 56.2 + sqrt(x);

root [] float z = x+y;

root [] x

(float)4.55999984741210938e+01

root [] y

(float)6.29527778625488281e+01

root [] z

(float)1.08552780151367188e+02

root [] TF1 f1(“Function drawing test","sin(x)/x",0,10);

root [] f1.Draw();

Lecture 7 19 / 43

Some ROOT conventions
• ROOT classes begin with T (like TF1 above)

• Non-class types end with _t (for example, Int_t)

• Constants begin with k (for example, color red: kRed)

• ROOT uses machine-independent types, e.g.:

• Bool_t – Boolean (0=false 1=true)

• Char_t – signed character 1 byte

• Int_t – Signed integer 4 bytes

• Short_t – Signed short integer 2 bytes

• Long64_t – Signed long integer 8 bytes

• Float_t – Float 4 bytes

• Double_t – Float 8 bytes (a.k.a. double precision)

Oxana Smirnova (Lund University) Programming for Scientists Lecture 7 20 / 43

Example of a ROOT session: CINT is used everywhere

Oxana Smirnova (Lund University) Programming for Scientists Lecture 7 21 / 43

Scripts in ROOT
• Un-named Script: a simple short-cut (like a bash script)

• Starts with { and ends with }

• All variables are in the global scope

• No class definitions

• No function declarations

• No parameters

• Named Script: essentially, a C++ program

• C++ functions

• Scope rules follow standard C++

• Function with the same name as the file is executed with a .x

• Parameters

• Class definitions (derived from a compiled class at your own risk)

Oxana Smirnova (Lund University) Programming for Scientists Lecture 7 22 / 43

Examples of scripts
• “Macro” is a historical way of denoting scripts in ROOT

• Un-named Macro: hello.C

{

cout << "Hello" << endl;

}

• Named Macro: say.C

void say(char * what = "Hello")

{

cout << what << endl;

}

• Executing the Named Macro

root [3] .x say.C

Hello

root [4] .x say.C("Hi there")

Hi there

Oxana Smirnova (Lund University) Programming for Scientists Lecture 7 23 / 43

Graphics in ROOT
• ROOT is no Photoshop, and graphics is designed for scientific results

representation

Oxana Smirnova (Lund University) Programming for Scientists

Hello

root [] TLine myline(.1,.9,.6,.6)

root [] myline.Draw()

root [] TText mytxt(.5,.2,”Hello”)

root [] mytxt.Draw()

• The Draw function adds the object to
the list of primitives of the current
graphics “pad”

• If a pad does not exist, it is
automatically created with a default
range [0,1]

• When the pad needs to be drawn or
redrawn, the Paint function is called

Lecture 7 24 / 43

More advanced examples: histograms

Oxana Smirnova (Lund University) Programming for Scientists

Make use of raster graphics “canvas”

Any object in the canvas

is clickable and editable

Lecture 7 25 / 43

Plotting graphs
• Points to plot are specified by two vectors: x and y in this example, of length n

• Both symmetric and asymmetric errors can be plotted

Oxana Smirnova (Lund University) Programming for Scientists

TGraph(n,x,y)

TCutG(n,x,y)

TGraphErrors(n,x,y,ex,ey)

TGraphAsymmErrors(n,x,y,exl,exh,eyl,eyh)

TMultiGraph

gerrors2.C

Lecture 7 26 / 43

More graphs: legend, annotations

Oxana Smirnova (Lund University) Programming for Scientists

zdemo.C

Lecture 7 27 / 43

Histogram classes in ROOT

Oxana Smirnova (Lund University) Programming for Scientists

• 1- and 2-dimensional histograms are most common

• C, S, F and D stand for the content type: D is double

• Profile histograms are 2-dim histograms “compressed” into 1-dim by calculating
mean values

• 3-dimensional histograms are essentially graphs

1-Dim

2-Dim

3-Dim

Lecture 7 28 / 43

Examples of histograms

Oxana Smirnova (Lund University) Programming for Scientists Lecture 7 29 / 43

Fitting in ROOT
• Histograms can be fitted with any function via TH1::Fit. Two fitting

algorithms are supported: Chi-square method and Log Likelihood

• The user functions may be of the following types:
• standard functions: gaus, landau, expo, poln
• combination of standard functions; poln + gaus

• A C++ interpreted function or a C++ precompiled function

• An option is provided to compute the integral of the function bin by bin instead
of simply compute the function value at the center of the bin.

• When an histogram is fitted, the resulting function with its parameters is added
to the list of functions of this histogram. If the histogram is made persistent
(saved as a file), the list of associated functions is also persistent.

• One can retrieve the function/fit parameters with calls such as:
• Double_t chi2 = myfunc->GetChisquare();

• Double_t par0 = myfunc->GetParameter(0); //value of 1st
parameter

• Double_t err0 = myfunc->GetParError(0); //error on
first parameter

Oxana Smirnova (Lund University) Programming for Scientists Lecture 7 30 / 43

Fitting example

Oxana Smirnova (Lund University) Programming for Scientists Lecture 7 31 / 43

Random numbers and histograms
• TH1::FillRandom can be used to randomly fill an histogram using either of:

• the contents of an existing TF1 analytic function

• another histogram

• Example: the following two statements create and fill an histogram 10000 times
with a default Gaussian distribution of mean 0 and sigma 1:

TH1F h1("h1","histo from a gaussian",100,-3,3);

h1.FillRandom("gaus",10000);

• TH1::GetRandom can be used to return a random number distributed
according the contents of an histogram

Oxana Smirnova (Lund University) Programming for Scientists Lecture 7 32 / 43

ROOT data format
• ROOT uses an own data format to store data (called root)

• A root-file has a tree-like structure, much like a directory:

• Has sub-directories, can have many levels

• Instead of files, it has objects – e.g. histograms

• A root-file is stored in a machine-independent format, so can be used on Linux or
Windows without conversion

• File structure:

• Each file has a header, containing information about the file and records in it

• Header is followed by the top directory description (name, timestamp etc)

• It is followed by histogram records

• Each such record also has a header

• Next comes Class Description List

• ROOT stores data and classes in the same file!

• Last three entries are the list of keys, list of free segments, and the address
where the data end

Oxana Smirnova (Lund University) Programming for Scientists Lecture 7 33 / 43

ROOT I/O: reading and writing data
• Tfile creates a new file or opens an existing file

• By default, an existing file is opened read-only

Oxana Smirnova (Lund University) Programming for Scientists

TFile f(“example.root”,”new”);

TH1F h(“h”,”My histogram”,100,-3,3);

h.FillRandom(“gaus”,5000);

h.Write();

TFile f(“example.root”);

TH1F *h = (TH1F*)f.Get(“h”):

h->Draw();

f.Map();

Writing to file

Reading from file

20010831/171903 At:64 N=90 TFile

20010831/171941 At:154 N=453 TH1F CX = 2.09

20010831/171946 At:607 N=2364 StreamerInfo CX = 3.25

20010831/171946 At:2971 N=96 KeysList

20010831/171946 At:3067 N=56 FreeSegments

20010831/171946 At:3123 N=1 END

Map() prints timestamp,
address of the record start,
nr. of bytes in the record,
its class name and compression factor

Lecture 7 34 / 43

ROOT file browser
• Objects in a file (e.g. histograms) can be browsed and manipulated using a GUI

Oxana Smirnova (Lund University) Programming for Scientists

A Root file pippa.root
with two levels of

directories

Lecture 7 35 / 43

ROOT can open files remotely

Oxana Smirnova (Lund University) Programming for Scientists

• TFile *f1 = TFile::Open(“local.root”)

• TFile *f2 = TFile::Open(“root://cdfsga.fnal.gov/bigfile.root”)

• TFile *f3 = TFile::Open(“rfio:/castor.cern.ch/alice/aap.root”)

• TFile *f4 = TFile::Open(“dcache://main.desy.de/h1/run2001.root”)

• TFile *f5 = TFile::Open(“chirp://hep.wisc.edu/data1.root”)

• TFile *f5 = TFile::Open(“http://root.cern.ch/geom/atlas.root”)

Lecture 7 36 / 43

Saving your pictures
• A pad/canvas may be saved in many formats using either the GUI menu or via
TPad::SaveAs function. Possible formats are:

• canvas.C : a C++ script is automatically generated. The canvas may be
generated again via .x canvas.C – good for re-producing your figures

• canvas.ps(eps) Postscript or Encapsulated PS

• canvas.svg : Scalable Vector Graphics

• canvas.gif

• canvas.root: keep objects in the ROOT format

Oxana Smirnova (Lund University) Programming for Scientists Lecture 7 37 / 43

But how does ROOT store data?
• Histograms and function plots are not actually data

• Data are stored in complex “tables”

• Each entry can be a complex structure: a combination of numbers, strings,
vectors etc

• Such “tables” can have structure themselves, like a directory tree

• Simplest data structure in ROOT: Ntuple

• Similar to a spreadsheet or a CSV list

• Each “row” is one entry, and each column corresponds to a variable

• Each variable belongs to a separate branch

• Restricted to float variables, and maximum of 12 variables

• If the data are complex, and many variables need to be recorded, ROOT Tree
must be used

• Ntuple on steroids

• Unlimited amount of branches

• Any variable type

• Many other advanced features, outside the scope of this lecture

Oxana Smirnova (Lund University) Programming for Scientists Lecture 7 38 / 43

Example of a ROOT tree in the browser

Oxana Smirnova (Lund University) Programming for Scientists

Variables
(leaves on
branches)

Simply click on a variable
to plot its values across

entire tree

Lecture 7 39 / 43

More ROOT goodies

Oxana Smirnova (Lund University) Programming for Scientists

Full LaTeX
support on
screen and
postscript

TCurlyArc
TCurlyLine
TWavyLine

and other building
blocks for Feynman

diagrams

Formula or
diagrams
can be

edited with

the mouse

Lecture 7 40 / 43

Volume graphics in ROOT

Oxana Smirnova (Lund University) Programming for Scientists Lecture 7 41 / 43

Event display tool written in ROOT

Oxana Smirnova (Lund University) Programming for Scientists

Option tabs

Status information Canvas Pads Object information

Input modes Zoom controls

Lecture 7 42 / 43

Summary of ROOT services and utilities
• Histogramming and Fitting

• Graphics (2D, 3D)

• Input/Output to file or socket: specialized for histograms, Ntuples (Trees)

• Collection Classes and Run Time Type Identification

• User Interface

• GUI: Browsers, Panels, Tree Viewer

• Command Line interface: C++ interpreter CINT

• Script Processor (C++ compiled ↔ C++ interpreted

Oxana Smirnova (Lund University) Programming for Scientists Lecture 7 43 / 43

