
Introduction to Programming and Computing for
Scientists
Lecture 5

Programming in C++: control structures, functions, pointers, arrays,
data structures

Katja Mankinen

thanks to Vytautas Vislavicius, Oleksandr Viazlo, Anders Floderus

Lund University

28 September 2018

Katja Mankinen Programming for Scientists 28 September 2018 1 / 31

Today’s goals

You will learn

to use if and if...else selection statements to choose among alternative
actions

to use for, while repetition statements to execute statements in a
program repeatedly

how to read and write to text files

to use data structures to represent a set of data items

to use C++ standard library class template vector

how to access variables in computer memory

to declare and use pointers

Katja Mankinen Programming for Scientists 28 September 2018 2 / 31

Control structures - if, else
if(condition) {

statement;
}
else if(condition) {

statement;
}
else {

statement;
}

if evaluates the condition. If it is true, the statement is executed.

If it is false, the statement in the optional else clause is executed.

if and else can be nested.

if(5 == 10) {
std::cout << "This computer is insane" << std::endl;

}
else if(5 == 5) {

std::cout << "Everything is fine" << std::endl;
}
else {

std::cout << "This will never happen" << std::endl;
}

Katja Mankinen Programming for Scientists 28 September 2018 3 / 31

Control structures - if, else
if(condition) {

statement;
}
else if(condition) {

statement;
}
else {

statement;
}

if evaluates the condition. If it is true, the statement is executed.

If it is false, the statement in the optional else clause is executed.

if and else can be nested.

if(5 == 10) {
std::cout << "This computer is insane" << std::endl;

}
else if(5 == 5) {

std::cout << "Everything is fine" << std::endl;
}
else {

std::cout << "This will never happen" << std::endl;
}

Katja Mankinen Programming for Scientists 28 September 2018 3 / 31

Control structures - for, while
for(initialization; condition; statement) {

statement;
}

while(condition) {
statement;

}

The for and while loops execute statements while some condition is met.
They are functionally equivalent.

Use a for loop when you know how many iterations you want to do.

Use a while loop when the number of iterations is unknown, for example if
the stopping condition depends on user input.

for(int i = 0; i < 10; i++) {
std::cout << "i equals " << i << std::endl;

}

bool keepGoing = true;
while(keepGoing) {

std::cout << "Still going!" << std::endl;
keepGoing = readUserInput(); //This magical function returns true or false

}

Katja Mankinen Programming for Scientists 28 September 2018 4 / 31

Control structures - for, while
for(initialization; condition; statement) {

statement;
}

while(condition) {
statement;

}

The for and while loops execute statements while some condition is met.
They are functionally equivalent.

Use a for loop when you know how many iterations you want to do.

Use a while loop when the number of iterations is unknown, for example if
the stopping condition depends on user input.

for(int i = 0; i < 10; i++) {
std::cout << "i equals " << i << std::endl;

}

bool keepGoing = true;
while(keepGoing) {

std::cout << "Still going!" << std::endl;
keepGoing = readUserInput(); //This magical function returns true or false

}

Katja Mankinen Programming for Scientists 28 September 2018 4 / 31

Control structures - continue, break

The continue statement is used in loops to skip directly to the next
iteration. It works in both for and while loops.

for(int i = 0; i < 10; ++i) {
if(i == 5) continue; //5 won’t be printed
std::cout << "i equals " << i << std::endl;

}

The break statement is used to exit the loop entirely. It works in for and
while loops as well as switch clauses (next slide).

while(true) {
std::cout << "Still going!" << std::endl;
if(readUserInput() != true) break;

}

Katja Mankinen Programming for Scientists 28 September 2018 5 / 31

Control structures - switch, do-while
The switch clause can be used to replace many if statements.

switch(variable) {
case 0:
std::cout << "variable is 0" << std::endl;
break;

case 1:
std::cout << "variable is 1" << std::endl;
break;

default:
std::cout << "variable is neither 0 nor 1" << std::endl;

}

The do-while loop works like a while loop, except the condition is checked
at the end of the loop instead of the beginning.

This guarantees that the statement will be executed at least once.

bool keepGoing = true;
do {

std::cout << "Still going!" << std::endl;
keepGoing = readUserInput(); //This magical function returns true or false

} while(keepGoing);

Katja Mankinen Programming for Scientists 28 September 2018 6 / 31

Exercise 1

Write a program that prints on the screen all the even numbers up to 10.

Katja Mankinen Programming for Scientists 28 September 2018 7 / 31

Namespaces
A namespace is a place where variables, classes and functions live.

They can share names as long as they live in different namespaces.

Typing std:: in front of all standard functions soon gets tiresome. The
using keyword allows them to be used without a qualifier.

If you use an entire namespace, beware of collisions (e.g std::count exists).

#include <iostream> //For cout

using std::cout; //Now we don’t have to type std::cout. Just cout will do.
using namespace std; //Like the above but for everything in the std namespace

namespace first {
int a = 10;

}

namespace second {
int a = 20;

}

int main() {
cout << first::a << endl; //Will print 10
cout << second::a << endl; //Will print 20
first::a = 30;
std::cout << first::a << std::endl; //Will print 30. Using std:: still works.
// std::cout << a << std::endl; this would give an error: a is not declared

}

Katja Mankinen Programming for Scientists 28 September 2018 8 / 31

Exercise 2

Temperatures in rainy Lund were measured from Monday to Sunday. Write a
C++ program that takes in the temperatures as a user input, and displays and
calculates the average temperature of that week.

Set total temperature to zero
Set day counter to one

While day counter is less than or equal to seven
Prompt the user to enter the next temperature
Input the next temperature
Add the temperature into the total temperature
Add one to the day counter

Set the temperature average to the total temperature divided by seven
Print the temperature average

Katja Mankinen Programming for Scientists 28 September 2018 9 / 31

Exercise 2

Temperatures in rainy Lund were measured from Monday to Sunday. Write a
C++ program that takes in the temperatures as a user input, and displays and
calculates the average temperature of that week.

Set total temperature to zero
Set day counter to one

While day counter is less than or equal to seven
Prompt the user to enter the next temperature
Input the next temperature
Add the temperature into the total temperature
Add one to the day counter

Set the temperature average to the total temperature divided by seven
Print the temperature average

Katja Mankinen Programming for Scientists 28 September 2018 9 / 31

A word of warning
#include <iostream>

using namespace std;

int main()
{

int loopCount;
cout << "Enter loopCount: ";
cin >> loopCount;
while (loopCount > 0){

cout << "Only " << loopCount << " loops to go!\n";
}
return 0;

}

What is the problem in the example above?

How would you fix it?

for (int i = 1; i <= loopCount; i++){
cout << "We’ve finished " << i << " loops\n";

}
// or:
while (loopCount > 0){

cout << "Only " << loopCount << " loops to go!\n";
loopCount = loopCount - 1;

}

Katja Mankinen Programming for Scientists 28 September 2018 10 / 31

A word of warning
#include <iostream>

using namespace std;

int main()
{

int loopCount;
cout << "Enter loopCount: ";
cin >> loopCount;
while (loopCount > 0){

cout << "Only " << loopCount << " loops to go!\n";
}
return 0;

}

What is the problem in the example above?

How would you fix it?

for (int i = 1; i <= loopCount; i++){
cout << "We’ve finished " << i << " loops\n";

}
// or:
while (loopCount > 0){

cout << "Only " << loopCount << " loops to go!\n";
loopCount = loopCount - 1;

}

Katja Mankinen Programming for Scientists 28 September 2018 10 / 31

Details are important: ++i vs i++

++i is known as pre increment whereas i++ is called post increment.

#include <iostream>
using namespace std;

int main(){

// Loop 1: pre increment
for(int i = 0; i < 5; ++i){

cout << i; // 0 1 2 3 4
}

// Loop 2: post increment
for (int j = 0; j < 5; j++){

cout << j; // 0 1 2 3 4
}

//BUT:
int k = 1, m;
m = ++k; // increment m’s value before the operation

int x = 1, y;
y = x++; // increment y’s value after the operation
cout << "\nm: " << m << " y: " << y << endl; // m: 2 y: 1

}

Katja Mankinen Programming for Scientists 28 September 2018 11 / 31

I/O - Reading and writing files
Reading and writing files is done using the ifstream and ofstream classes
defined in the fstream library. The following program reads numbers from a
file (input.txt) and prints the sum to another file (output.txt).

#include <iostream> //For cout
#include <fstream> //For ifstream and ofstream

int main() {
std::ifstream inFile("input.txt"); //Name of the file to read from
if(!inFile) {

std::cout << "Error: could not read from file input.txt" << std::endl;
return 1; //A nonzero return value indicates failure

}
double variable = 0.;
double sum = 0.;
while(inFile >> variable) { //Read numbers until we hit the end of file

sum += variable;
}
inFile.close();

std::ofstream outFile("output.txt");
if(!outFile) {

std::cout << "Error: could not write to file output.txt" << std::endl;
return 1; //A nonzero return value indicates failure

}
outFile << sum << std::endl;
outFile.close();

return 0;
}

Katja Mankinen Programming for Scientists 28 September 2018 12 / 31

Strings

A string is a sequence of characters, implemented by the string class.

#include <iostream> //For cout and cin
#include <string>
using namespace std;

int main() {
string str("It’s dangerous to go alone, take this!");
size_t pos = str.find("take"); //Position in string where "take" is found

cout << str.substr(0, 18) << str.substr(pos) << endl; // substring; (string substr(int pos = 0, int n =
string::npos) const;)

return 0; //It’s dangerous to take this!
}

Katja Mankinen Programming for Scientists 28 September 2018 13 / 31

Reading out line by line using string

For reading out lines of data from a file, you can use the getline function.

#include <iostream>
#include <fstream> //header file for file writing and reading
#include <string> //header file for strings

using namespace std;

int main () {

fstream in;
in.open("inputtext.txt"); //open an input file
string s;

cout<<"Line 1:"<<endl;
getline(in,s); // read first line
cout<<s<<endl;
cout<<"Line 2:"<<endl;
getline(in,s);// read second line
cout<<s<<endl;

in.close();
return 0;

}

Katja Mankinen Programming for Scientists 28 September 2018 14 / 31

Containers. Arrays
How to deal with a collection of data, such as a list of measurement values
or a list of names?

An array is a fixed-size sequential container.

To refer to a particular location or element in the array, you can specify the
name of the array and the position number of the particular element:
int t[8] = {20, -17, 4, 16, 12, 16, 8, 5};

Multidimensional arrays: type name[size1][size2]...[sizeN];
→ int chessBoard[8][8]

Katja Mankinen Programming for Scientists 28 September 2018 15 / 31

Containers. Arrays

Try to avoid using arrays in C++. Use vectors instead (next slide).
Comments to the code below contain possible pitfalls of using arrays.

Arrays allocated on the heap are deleted with the delete[] operator.

#include <iostream> //For cout and cin
using namespace std;

int main() {
const int length = 10; //The length must be known at compile time
int arr[length]; //This array is fixed-size
int input;
int pos = 0; //An array doesn’t know its own size or how many elements it contains
while(cin >> input) {

arr[pos] = input;
if(pos == length) break; //Remember that the array can’t grow, so this is our limit
++pos; //We have to keep track of the position

}
for(int i = 0; i < pos; ++i) cout << arr[i] << endl; //Easy to go out of range
return 0;

}

Katja Mankinen Programming for Scientists 28 September 2018 16 / 31

Vectors
A vector is a sequential container that can change size dynamically.

It is a template class. The vector type must be defined at compile time.

Vectors are fast at element access and insertion/removal at the end.

#include <iostream> //For cout and cin
#include <vector>
using namespace std;

int main() {
vector<int> vec; //Create a vector with base type int
int input;
while(cin >> input) vec.push_back(input); //Store each input
for(size_t i = 0; i < vec.size(); ++i) cout << vec.at(i) << endl; //Print them back
return 0;

}

Use at to access individual elements. It’s also possible to use []. Try to
avoid this! There is no bounds checking at run time. Your bugs will go
unnoticed.

vector<int> vec; //Create an empty vector
cout << vec[3] << endl; //Index is out of bounds. Your program will happily print garbage
cout << vec.at(3) << endl; //Using at produces an error at run time, exposing your bug

Katja Mankinen Programming for Scientists 28 September 2018 17 / 31

Vectors
A vector is a sequential container that can change size dynamically.

It is a template class. The vector type must be defined at compile time.

Vectors are fast at element access and insertion/removal at the end.

#include <iostream> //For cout and cin
#include <vector>
using namespace std;

int main() {
vector<int> vec; //Create a vector with base type int
int input;
while(cin >> input) vec.push_back(input); //Store each input
for(size_t i = 0; i < vec.size(); ++i) cout << vec.at(i) << endl; //Print them back
return 0;

}

Use at to access individual elements. It’s also possible to use []. Try to
avoid this! There is no bounds checking at run time. Your bugs will go
unnoticed.

vector<int> vec; //Create an empty vector
cout << vec[3] << endl; //Index is out of bounds. Your program will happily print garbage
cout << vec.at(3) << endl; //Using at produces an error at run time, exposing your bug

Katja Mankinen Programming for Scientists 28 September 2018 17 / 31

Vectors

Other vector member functions include for example

size: Return size

front: Access first element

back: Access last element

push_back: Add element at the end

pop_back: Delete last element

clear: Removes all elements from the vector leaving the container with a
size of 0.

insert: Insert new elements

More functions and examples:
http://www.cplusplus.com/reference/vector/vector/

Katja Mankinen Programming for Scientists 28 September 2018 18 / 31

http://www.cplusplus.com/reference/vector/vector/

Exercise 3: vectors

Write a simple program to manage a shopping list. Each item is a string stored
in a vector. First, write a print function that prints out the contents of the
shopping list. Test the print function with a main() that should do the following:

1 Create a vector shoppingList and add items "eggs," "milk," "sugar,"
"chocolate," and "flour". Print it using your print function.

2 Remove the last element from the vector. Print it.

3 Append the item "coffee" to the vector. Print it.

4 Print how many items you have on the list.

Katja Mankinen Programming for Scientists 28 September 2018 19 / 31

Pointers - motivation 1/3

How variables are stored in computer’s memory?

Variables are stored in memory cells inside the computer’s memory. Cells
have unique addresses.

When you refer to a variable by name in your code, the computer looks up
the address that the variable name corresponds to, goes to that location in
memory, and retrieves or sets the value it contains.

The & (reference) operator gives you the address occupied by a variable.

If var is a variable, then &var gives the address of that variable.

int variable = 3;
cout << &variable << endl; //0x7fff5fbff8a8

Katja Mankinen Programming for Scientists 28 September 2018 20 / 31

Pointers - motivation 1/3

How variables are stored in computer’s memory?

Variables are stored in memory cells inside the computer’s memory. Cells
have unique addresses.

When you refer to a variable by name in your code, the computer looks up
the address that the variable name corresponds to, goes to that location in
memory, and retrieves or sets the value it contains.

The & (reference) operator gives you the address occupied by a variable.

If var is a variable, then &var gives the address of that variable.

int variable = 3;
cout << &variable << endl; //0x7fff5fbff8a8

Katja Mankinen Programming for Scientists 28 September 2018 20 / 31

Pointers - motivation 2/3

We can manipulate the data in the computer’s memory directly.

You can assign and de-assign any space in the memory as you wish.

This is done using pointers.

Pointer = variable that points to a specific address in the memory

Katja Mankinen Programming for Scientists 28 September 2018 21 / 31

Pointers - motivation 3/3

Manipulating the memory addresses of data can be faster and more efficient
than manipulating the data itself.

If you have a large data structure, and you pass it by value, the computer has
to push a copy of it onto the stack. This wastes both time and stack-space!

If you pass over only the address, you don’t need to make a big copy and
you only push an address onto the stack.

Very common use case: a pointer to a resource (file, database, histogram...)
that was made somewhere else by some other code, and you have to interact
with it for a while

Or a pointer to a resource that is shared between multiple objects: each
object holds a pointer to the resource rather than always copying it.

Katja Mankinen Programming for Scientists 28 September 2018 22 / 31

Kalle’s home street - very simplified example

Example on whiteboard

.... 1234 1235 1234 1235 1236 1237 ... memory address

23
Kalle

1235
Kajsa

23
Katrin

&

.... 1242 .. 1259 ...

int Kalle = 23;
int* Kajsa;
int Katrin;
Kajsa = &Kalle
Katrin = Kalle

Katja Mankinen Programming for Scientists 28 September 2018 23 / 31

Pointers in action

int number = 88; // integer variable with a value
int *ptrNumber = &number; // assign the address of variable number to pointer ptrNumber (0x22ccec)
cout << ptrNumber<< endl; // print the content of the pointer, contains an address (0x22ccec)
cout << *ptrNumber << endl; // print the value "pointed to" by the pointer, which is an int (88)
*ptrNumber = 99; // assign a value to where the pointer is pointed to, NOT to the ptr variable
cout << *ptrNumber << endl; // print the new value "pointed to" by the pointer (99)
cout << number << endl; // the value of variable number changes as well (99)

Katja Mankinen Programming for Scientists 28 September 2018 24 / 31

The stack and the heap
The memory available for a program to use (at least as far as we’re
concerned) is made up of two areas - The stack and the heap.

The stack is a small (megabytes), fixed size chunk of memory for local
variables. All examples so far have used only the stack.

When a variable on the stack falls out of scope, it is deallocated. You don’t
have to worry about memory management with the stack.

The stack is small, so it overflows if you put too many things on it. But
don’t worry - This typically only happens due to bugs (e.g an infinite loop).

#include "coords.h"

void makeCoordinates(int b) {
coords co(b, b*5);

}

int main() {
int a = 1;
makeCoordinates(a + 2);
//Grayed out variables have now been deallocated
return 0;

}

a 1
Stack Heap

Katja Mankinen Programming for Scientists 28 September 2018 25 / 31

The stack and the heap
The heap is a large pool of memory that can grow dynamically.

To put a variable on the heap, create it with the new operator. This
operator returns a pointer through which the variable is accessed.

A pointer is really just an integer. The number corresponds to a memory
address. The pointer points to that memory.

Variables on the heap are never deallocated automatically. The memory
must be freed manually using the delete operator.

The pointer itself is on the stack and is deallocated automatically.

#include "coords.h"

void makeCoordinates(int b) {
coords* co = new coords(b, b*5);

}

int main() {
int a = 1;
makeCoordinates(a + 2);
//Grayed out variables have now been deallocated
return 0;

}

a 1
Stack Heap

x 3
15y

Katja Mankinen Programming for Scientists 28 September 2018 26 / 31

Pointers and references
A pointer can point anywhere in memory, both the stack and the heap.

To declare that a variable is a pointer, put an asterisk (*) after its type.

To get the memory address of a variable, use the reference operator (&).

If you have a pointer and you want the value that the pointer points to, use
the dereference operator (*). That’s right - The asterisk has two uses!

int foo = 10; //Two regular variables
int bar = 20;
int* p1; //Two pointers to int
int* p2;
p1 = &foo; //p1 points to foo
p2 = &bar; //p2 points to bar

foo
bar

10
20

p1
p2

0x7fff18c41160
0x7fff18c41168

*p2 = 30; //bar = 30
*p1 = *p2; //foo = bar
p1 = p2; //p1 now points to bar
*p1 = 40; //bar = 40

foo
bar

30
40

p1
p2

0x7fff18c41168
0x7fff18c41168

To access members of a class via pointer, use the arrow (->) operator.

betterCoords a(1, 1); //Regular object
a.SetCartesian(2, 2); //Access with dot
betterCoords* b = new betterCoords(1, 1); //Pointer to object
b->SetCartesian(2, 2); //Access with arrow. This is the same as (*b).SetCartesian(2, 2)

Katja Mankinen Programming for Scientists 28 September 2018 27 / 31

Pass by value, reference or pointer
When calling a function, you are really passing copies of all the arguments.

If you want to change the passed values, you must use references or pointers.

int x = 1;
int y = 2;

void swapByValue(x, y); //This will NOT swap the values!
void swapByReference(x, y); //This will work. Using references is recommended.
void swapByPointer(&x, &y); //This will work, but don’t use pointers unless necessary.

void swapByValue(int a, int b) { //a and b are copies of x and y
int temp = a; //Whatever we do here has no effect on the original x and y
a = b;
b = temp;

}

void swapByReference(int& a, int& b) { //a and b are references to x and y
int temp = a; //For all intents and purposes, they ARE x and y
a = b;
b = temp;

}

void swapByPointer(int* a, int* b) { //a and b are pointers to x and y
int temp = *a; //Not safe - What if they are NULL pointers? Use references instead.
*a = *b;
*b = temp;

}

Katja Mankinen Programming for Scientists 28 September 2018 28 / 31

Exercise 5: basic pointer manipulations
What are the outputs of the following program?

#include <iostream>
using namespace std;
int main()
{

int *p1, *p2;
p1 = new int;
*p1 = 42;
p2 = p1;
cout << "*p1 == " << *p1 << endl;
cout << "*p2 == " << *p2 << endl;
*p2 = 20;
cout << "*p1 == " << *p1 << endl;
cout << "*p2 == " << *p2 << endl;
p1 = new int;
*p1 = 100;
cout << "*p1 == " << *p1 << endl;
cout << "*p2 == " << *p2 << endl;
return 0;

}

*p1 == 42
*p2 == 42
*p1 == 20
*p2 == 20
*p1 == 100
*p2 == 20

Katja Mankinen Programming for Scientists 28 September 2018 29 / 31

Exercise 5: basic pointer manipulations
What are the outputs of the following program?

#include <iostream>
using namespace std;
int main()
{

int *p1, *p2;
p1 = new int;
*p1 = 42;
p2 = p1;
cout << "*p1 == " << *p1 << endl;
cout << "*p2 == " << *p2 << endl;
*p2 = 20;
cout << "*p1 == " << *p1 << endl;
cout << "*p2 == " << *p2 << endl;
p1 = new int;
*p1 = 100;
cout << "*p1 == " << *p1 << endl;
cout << "*p2 == " << *p2 << endl;
return 0;

}

*p1 == 42
*p2 == 42
*p1 == 20
*p2 == 20
*p1 == 100
*p2 == 20

Katja Mankinen Programming for Scientists 28 September 2018 29 / 31

Summary

Control structures: if-else, for, while, continue, break, switch,
do-while

Containers: arrays and vectors

Stack and heap

Pointers

Katja Mankinen Programming for Scientists 28 September 2018 30 / 31

Next Lecture

Classes

Inheritance

Polymorphism

The const keyword

Type Casting

Operator overloading

Templates

Katja Mankinen Programming for Scientists 28 September 2018 31 / 31

Command line parameters
#include <iostream> //For cout

int main(int argc, char* argv[]) {
std::cout << "Received " << argc << " parameters:" << std::endl;
for(int i = 0; i < argc; ++i) {

std::cout << argv[i] << std::endl;
}
return 0;

}

You can pass parameters to a program via command line. They arrive as
C-strings contained within an array.

The first parameter is always the name of the program. Let’s say, for the
sake of example, that it’s called ‘commandLineParams’.

Here is what it would look like if built and run from a terminal.

$ g++ -o commandLineParams commandLineParams.cpp
$./commandLineParams abc 123 -bla --bla
Received 5 parameters
./commandLineParams
abc
123
-bla
--bla

Katja Mankinen Programming for Scientists 28 September 2018 32 / 31

Lists, Pairs
A list is a container with fast element insertion and removal.

Unlike vectors, elements in a list have no absolute position. Use an
iterator to loop through them. Iterators act similarly to pointers.

#include <iostream> //For cout and cin
#include <list>
using namespace std;

int main() {
list<int> lst; //List with base type int
lst.push_back(10); //Insert some elements, then iterate over the list and print them
lst.push_back(15);
for(list<int>::iterator it = lst.begin(); it != lst.end(); ++it) cout << *it << endl;
return 0;

}

A pair is a simple container that stores two values.

#include <iostream> //For cout and cin
#include <utility> //For pair
using namespace std;

int main() {
pair<int, double> p(5, 3.14); //A pair of int and double
cout << "The pair is " << p.first ", " << p.second << endl;
return 0;

}

Katja Mankinen Programming for Scientists 28 September 2018 33 / 31

Sets

A set is a container that stores unique objects. If a set already contains a
certain element, adding that element again does nothing. Sets are ordered.

Adding/removing elements takes logarithmic time, which is relatively slow.

Searching also takes logarithmic time - This is as fast as a search can get!

#include <iostream> //For cout and cin
#include <set>
using namespace std;

int main() {
set<int> s; //Set with base type int
s.insert(7); //Add some elements. The order in which they are added doesn’t matter.
s.insert(1);
s.insert(5);
for(set<int>::iterator it = s.begin(); it != s.end(); ++it) { //Traverse with iterator

cout << *it << endl; //Prints 1, 5, 7
}
if(s.count(8)) cout << "The set contains the number 8" << endl; //Search in the set
return 0;

}

Katja Mankinen Programming for Scientists 28 September 2018 34 / 31

Maps
A map is an associative container that stores key/value pairs. A key can not
be inserted twice, but the value of an existing key can be changed.

#include <iostream> //For cout and cin
#include <string>
#include <map>
#include <utility> //For make_pair
using namespace std;

int main() {
map<string, int> pBook; //Map associating strings to ints. It’s a phone book!
pBook.insert(make_pair("Reginald", 123)); //Pairs can be inserted in various ways
pBook.insert(pair<string, int>("Marmaduke", 456));
pBook["Bobby Floyd"] = 789;

map<string, int>::iterator it = pBook.find("Bruce Lee"); //How to search a map
if(it != pBook.end()) cout << it->first << "has number " << it->second << endl;
pBook["Reginald"] = pBook["Jim Bob"]; //Beware of using [] - Jim Bob is now in the book

for(map<string, int>::iterator it2 = pBook.begin(); it2 != pBook.end(); ++it2) {
cout << it2->first << " - " << it2->second << endl; //Print everyone in the book

}
return 0;

}

Bobby Floyd - 789
Jim Bob - 0
Marmaduke - 456
Reginald - 0

Katja Mankinen Programming for Scientists 28 September 2018 35 / 31

