
Introduction to Programming and Computing for
Scientists
Lecture 6

Object oriented programming in C++: classes, inheritance,
polymorphism

Katja Mankinen

thanks to Vytautas Vislavicius, Oleksandr Viazlo, Anders Floderus

Lund University

3 October 2018

Katja Mankinen Programming for Scientists 3 October 2018 1 / 31

Today’s goals

You will learn

to group data into classes

to declare, define and access class members

how to decrease your workload by using inheritance and polymorphism

about a good coding style

Katja Mankinen Programming for Scientists 3 October 2018 2 / 31

From procedural oriented programming...

What should the program do next?

1 split your problem into a set of tasks and subtasks

2 make functions for the tasks

3 tell the computer to perform the tasks in sequence

Katja Mankinen Programming for Scientists 3 October 2018 3 / 31

... to Object Oriented Programming (OOP)
Object = data + functions
One way to think about a car: it consists of wheels, motor, doors, seats, windows,
... Another way: it can move, speed up, slow down, park....

Encapsulation: binding together related data and functions, and keeping
both safe from outside interference

Inheritance: allowing to define a class in terms of another class, and being
able to reuse the code

Polymorphism: allowing objects to act differently in different situations with
the same syntax

Benefits:

Modularity, easier software design, maintenance and troubleshooting: the car
object broke down → problem must be in that class

Reusability through inheritance

Flexibility through polymorphism

Katja Mankinen Programming for Scientists 3 October 2018 4 / 31

C++ class

A class is a container for data and functions.

Member variables (data members): variables in a class

Member functions (methods): functions in a class.

An instances of the class are called an objects. You can create many
instances of a class

Student

name
grade

getName()
getGrade()

Dog
name
breed
color

getName()
getColor()

Circle
radius
color

setRadius()
getArea()

class name
(identifier)

data members

member
functions

Dog RinTinTin

name="Rin Tin Tin"
breed="German Shepherd"

getName()
getBreed()

class name

data members

member
functions

Dog Laika

name="Laika"
breed="mixed"

getName()
getBreed()

Dog Snoopy

name="Snoopy"
breed="beagle"
color="white/black"

getName()
getBreed()
getColor()

Instances of the Dog class

Katja Mankinen Programming for Scientists 3 October 2018 5 / 31

Syntax

class Dog { //class name

public: // Access: the following members (data or functions) are accesible and available to all in the
system

Dog (int initialAge); // constructor with default values for data members
~Dog(); // destructor (does nothing in this case)

//member functions:
int GetAge() {return itsAge;} //inline*! "Getter": to allow others to read the value of a private data

member
void SetAge(int age) {itsAge = age;} //inline! "Setter": to allow classes to modify the value of a

private data member
void Woof() {cout << "Woof!\n"; }

private: // Access: the following members are accessible and available within this class only
int itsAge; // data members (variables)

};

/// inline functions: the compiler places a copy of the code of the function at each point where the
function is called at compile time -> any change to an inline function requires recompilation

// more complex methods: define the functions outside the class (in .cpp!) using the scope operator (::)

Katja Mankinen Programming for Scientists 3 October 2018 6 / 31

Dog class declaration and implementation

Declaration (.h files): list of functions and variables

Definition (.cpp files): implementation of functions

dog.h:

#include <iostream>
using namespace std;

class Dog { // class name

public:
Dog (int initialAge);
~Dog();
int GetAge() {return itsAge;} // member functions (methods)
void SetAge(int age) {itsAge = age;}
void Woof() {cout << "Woof!\n"; }

private:
int itsAge; // data member (variable)

};

Katja Mankinen Programming for Scientists 3 October 2018 7 / 31

Dog class declaration and implementation
dog.cpp:

#include "dog.h" //be sure to include the header file!

Dog::Dog(int initialAge) //constructor. Scope operator (::) to define a member of a class outside the
class. A constructor is called every time a new object is created.

{
itsAge = initialAge;

}

Dog::~Dog() //destructor, takes no action
{
}

//Create a dog, set its age, have it "woof", tell us its age, have it "woof" again, and change its age.

int main()
{

// Declare and construct an instance Snoopy of the class Dog, and set initialAge to 5
Dog Snoopy(5);
// or: Dog Snoopy = Dog(5);
// Invoke a data member or member function: instanceName.memberName
Snoopy.Woof();
cout << "We created a dog called Snoopy and it is " << Snoopy.GetAge() << " years old!\n";
Snoopy.Woof();
Snoopy.SetAge(7);
cout << "Now it is " << Snoopy.GetAge() << " years old.\n";
//Snoopy.itsAge = 5; //error: int Dog::itsAge is private
return 0;

}

Katja Mankinen Programming for Scientists 3 October 2018 8 / 31

C++ class: real life physics example

class particle { //Here I declare a class of type "particle"
public:

particle(int id, double pt); //Constructor. Call to create an instance of the class.
~particle(); //Destructor. Gets called when an instance of the class is destroyed.

double pt();
double m();
double e();

private: //This class has no private members
};

particle::particle(int id, double pt) { //Simply store the user supplied values
id = 11; // 11 is electron by convention of Particle Data Group
pt = 20; // in GeV

}

particle::~particle() {
//There are no special tasks to perform when destroying a set of particles

}

Non-simplified ROOT version: TParticle.h

Katja Mankinen Programming for Scientists 3 October 2018 9 / 31

https://root.cern.ch/doc/v608/TParticle_8h_source.html

Inheritance: IS-A

What do triangle, circle and rectangle have in common? What is special in
triangle (or circle or rectangle)?

Inheritance is a way to share characteristics among similar types.

A subtype inherits characteristics of its base type.

Katja Mankinen Programming for Scientists 3 October 2018 10 / 31

Inheritance
class triangle { //Let’s take this chance to observe some good programming conventions

public:
triangle(double base = 0., double height = 0.);
~triangle();
double area();
double getBase(); //Getters and setters are used to handle private info
double getHeight();
void setBase(double base); //This function should make sure that the base is positive
void setHeight(double height);

private: //All member varibles should in general be private to facilitate encapsulation
double base_; //Name private members with an underscore to avoid shadowing (= a variable declared within

a certain scope has the same name as a variable declared in an outer scope)
double height_;

};

class rectangle {
public:
rectangle(double base = 0., double height = 0.);
~rectangle();
double area();
double getBase();
double getHeight();
void setBase(double base);
void setHeight(double height);

private:
double base_;
double height_;

};

Katja Mankinen Programming for Scientists 3 October 2018 11 / 31

Inheritance
We’d have to repeat a lot of code to write the triangle and rectangle.

Inheritance simplifies this immensely. Both triangle and rectangle are
really special cases of something more general. Let’s call it a shape.

#include <cmath> //For fabs

class shape { //This class has the common characteristics of triangles and rectangles
public:
shape(double base = 0., double height = 0.);
~shape();
double getBase() { return base_; } //Simple functions can be defined here in the header
double getHeight() { return height_; }
void setBase(double base) { base_ = fabs(base); }
void setHeight(double height) { height_ = fabs(height); }

protected: //Protected members can be accessed by this and whatever inherits from this
double base_;
double height_;

};

#include "shape.h"

shape::shape(double base, double height) {
setBase(base); //Let’s call these functions rather than duplicate the code
setHeight(height);

}

shape::~shape() { }

Katja Mankinen Programming for Scientists 3 October 2018 12 / 31

Inheritance
Now we’ll make triangle inherit from shape. The only new code we have
to write is whatever is specific to triangle (in this case the area function).

#include "shape.h" //Include the class that we want to inherit from

// class derivedClass : access_mode baseClass. Note only one colon (:) !
class triangle : public shape { //Triangle inherits from shape, access levels unchanged

public:
triangle(double base = 0., double height = 0.); //A ctor/dtor must still be provided
~triangle();
double area() { return base_*height_/2.; } //This function is specific to triangle

};

#include "triangle.h"

// note 2 colons (::)!
triangle::triangle(double base, double height) : shape(base, height) {

//The first (and in this case only) thing to do is initialize the parent object
}

triangle::~triangle() {
//At the end of this destructor, the parent destructor is called automatically

}

shape is the ‘base’ or ‘parent’ class, while triangle is the ‘derived’ class.

When an object is created, the base part should always be constructed first.
Destruction follows the opposite order - The base should be destroyed last.
Katja Mankinen Programming for Scientists 3 October 2018 13 / 31

Polymorphism
Let’s pretend the area of a shape is so crucial, we have functions to check it.

bool isBigEnough(rectangle& obj) {
return obj.area() > 10.;

}

bool isBigEnough(triangle& obj) {
return obj.area() > 10.;

}

This is clunky because every new kind of shape needs its own function.

Ideally, we’d like to have a single function that works with any kind of shape.

bool isBigEnough(shape& obj) {
return obj.area() > 10.;

}

This function will happily accept triangle and reclangle objects as
arguments. They inherit from shape, so they are shapes.

The problem is that shape does not declare an area function, so the
compiler complains. We can try adding one to the class definition.

double area() { return 0.: } //Let’s add this to shape.h

Katja Mankinen Programming for Scientists 3 October 2018 14 / 31

Polymorphism
This small test program doesn’t print the answer we want. The problem is of
course that isBigEnough calls the area function in shape, which returns 0.

#include <iostream> //For cout
#include "triangle.h" //Both triangle.h and rectangle.h include shape.h
#include "rectangle.h" //I added #ifndef macros in shape.h, so it isn’t doubly defined
using namespace std;

bool isBigEnough(shape& obj) { //A shape is big enough if its area is greater than 10
return obj.area() > 10.;

}

int main() { //Create some shapes, print their area and see if they’re big enough
triangle tri(10., 10.);
cout << "Triangle with area " << tri.area();
if(isBigEnough(tri)) cout << " is big enough!" << endl;
else cout << " is NOT big enough!" << endl;

rectangle rec(5., 5.);
cout << "Rectangle with area " << rec.area();
if(isBigEnough(rec)) cout << " is big enough!" << endl;
else cout << " is NOT big enough!" << endl;

return 0;
}

Triangle with area 50 is NOT big enough!
Rectangle with area 25 is NOT big enough!

Katja Mankinen Programming for Scientists 3 October 2018 15 / 31

Polymorphism

We can get the desired behavior by making the area function virtual.

virtual double area() { return 0.: } //Change the area function in shape.h to this

When a function is virtual, derived classes are allowed to override it. If
isBigEnough receives a triangle, the triangle version of area is called.

The call to area thus behaves differently depending on whether the shape
is a triangle or rectangle. Such a function is said to be polymorphic.

After area is declared virtual, the test program gives the expected output.

Triangle with area 50 is big enough!
Rectangle with area 25 is big enough!

You seldom need to tell a function what kind of shape it is dealing with at
compile time. The proper behavior is achieved through polymorphism.

Good use of inheritance and polymorphism will make code much easier to
read, maintain and extend. One of the great strengths of OOP!

Katja Mankinen Programming for Scientists 3 October 2018 16 / 31

Polymorphism
Virtual functions work the same way with pointers as with references.

bool isBigEnough(shape* obj) {
return obj->area() > 10.; //Works as expected - area is called in the derived class

}

Pointers mesh well with inheritance, because a pointer of type base class can
point to a derived class. Remember, triangles and rectangles are shapes.

shape* shapePtr = new shape(10, 10); //Nothing new - A shape pointer pointing to a shape
isBigEnough(shapePtr); //The area function in shape is called, so this returns false

shape* triPtr = new triangle(10, 10); //Perfectly OK - Any triangle is also a shape
isBigEnough(triPtr); //The area function in triangle is called, so this returns true

triangle* illegalPtr = new shape(10, 10); //Not OK - A shape isn’t necessarily a triangle

If a class is handled polymorphically, it should have a virtual destructor.

virtual ~shape(); //Make the destructor virtual in shape.h, or you’re in for trouble

shape* triPtr = new triangle(10, 10); //A shape pointer that points to a triangle
delete triPtr; //Calls ~shape(). Make it virtual so the triangle part is destroyed too!

Katja Mankinen Programming for Scientists 3 October 2018 17 / 31

Polymorphism

We made shape return an area of zero, but in reality it is undefined.

This is a valid concern. In fact, it doesn’t make sense to instantiate a shape
in the first place. Only triangle and rectangle are meaningful objects.

To avoid this logical inconsistency, make the area function pure virtual in
shape. A class that has a pure virtual function can not be instantiated.

A class that contains at least one pure virtual function is called abstract.

virtual double area() = 0; //Put this in shape.h to make area a pure virtual function

Any class that inherits from shape must now either implement area or be
abstract itself. This ensures that no one can misuse our shape class.

triangle t(10, 10); //No problem - A triangle is a meaningful object
shape s(10, 10); //This will not compile. Shape is abstract and can not be instantiated!

Katja Mankinen Programming for Scientists 3 October 2018 18 / 31

The const keyword
Declare a variable as const when you want to be certain that it is never
modified. Trying to do so then results in a compile time error.

const int var = 10; //Remember to initialize at declaration time. Const variables can’t be modified later
var = 20; //Nope! Because var is const, this results in a compile time error

The const keyword acts on whatever word or symbol is to its immediate
left. If there is nothing to its left, it acts on whatever is to its right instead.

int const var = 10; //These two lines are completely equivalent
const int var = 10; //Pick one usage and be consistent

A const pointer (int* const p) must point to the same variable forever.

A pointer to const (int const* p) can’t be used to assign to a variable.

int foo = 10;
int bar = 20;

int* const p1 = &foo; //p1 is a constant pointer to int (so the pointer is const but not foo)
*p1 = 30; //No problem
p1 = &bar; //Error! p1 must forever point to foo

int const* p2 = &foo; //p2 points to a constant int (so foo is const but not the pointer itself)
*p2 = 30; //Error! foo can’t be assigned to via p2. Assigning via e.g. p1 is still fine, though.
p2 = &bar; //No problem

References behave similarly to pointers, except it is redundant to declare a
reference as const. References are always const!

Katja Mankinen Programming for Scientists 3 October 2018 19 / 31

The const keyword

const variables and objects are picky about how they are used. They will
only work with functions that have promised in advance not to change them.

A function can promise not to change an argument by declaring it as const.

This is relevant only when passing arguments by reference or pointer. When
an argument is passed by value, any modifications are local to the function.

#include <iostream>

using namespace std;

void passByValue(int foo) { cout << foo << endl; } //None of these functions actually modify foo
void passByPtr(int* foo) { cout << *foo << endl; }
void passByConstPtr(int const* foo) { cout << *foo << endl; } //But this one explicitly promises not to!

int main() {
const int foo = 10;
passByValue(foo); //No problem! The function can only modify a local copy of foo
passByPtr(&foo); //Compile time error! Function could in principle modify foo
passByConstPtr(&foo); //OK! The function has promised not to modify foo

}

Katja Mankinen Programming for Scientists 3 October 2018 20 / 31

The const keyword

Member functions of an object can be declared as const to promise that
they won’t try to modify any of the object’s member variables.

This promise must be made before a const object will use the functions.

class date { //This class represents a day, month and year
public:
date(int day, int month, int year); //You get the idea, so let’s skip everything but the month part
int getMonth() const; //This function is const - It promises not to change any of the member variables
void setMonth(int month);

private:
int month_;

};

const date myBirthday(23, 8, 1986); //Changing my birthday makes no sense at all. I’ll make it const!
int month = myBirthday.getMonth(); //No problem, getMonth has promised not to change anything
myBirthday.setMonth(8); //Results in a compiler error because setMonth is not const. It might make changes!

Code that works as intended with const variables is called “const correct”.

If you want your code to be const correct, do it right from the start! It is
extremely difficult to take a program that is not const correct and fix it.

Katja Mankinen Programming for Scientists 3 October 2018 21 / 31

Operator overloading

When an operator does more than one thing, it is said to be overloaded.

For example, the addition operator + is overloaded. It adds when acting on
integers, but concatenates when acting on strings.

int aVal = 10;
int bVal = 20;
int cVal = aVal + bVal; //The addition operator adds two numbers and returns the sum, so cVal = 30

string aStr = "Hello";
string bStr = ", world!";
string cStr = aStr + bStr; //Now the same operator concatenates two strings, so cStr = "Hello, world!"

Operators are really just convenient shorthands for function calls. The
operator functions have silly names, but they are ordinary functions.

c = a.operator!(); //Equivalent to c = !a
c = a.operator+(b); //Equivalent to c = a + b
c = operator+(a,b); //Also equivalent to c = a + b. The operator doesn’t have to be a member of a

Katja Mankinen Programming for Scientists 3 October 2018 22 / 31

Function overloading

The overloaded functions must have different input parameters either by
data types or their number

#include <iostream>

// volume of a cube
int volume(int s)
{

return s*s*s;
}

// volume of a cylinder
double volume(double r, double h) //also works: int volume(double r, double h)
{

return 3.1415926*r*r*h;
}

int main()
{

std::cout << volume(10) << std::endl; // prints 1000
std::cout << volume(2.5, 8) << std::endl; // prints 157.08
return 0;

}

Katja Mankinen Programming for Scientists 3 October 2018 23 / 31

What is coding style?

Style == Readability

How and when to use comments,

Tabs or spaces for indentation (and how many spaces),

Appropriate use of white space,

Proper naming of variables and functions,

Code grouping an organization,

Patterns to be used/avoided.

Why Coding Style Matters?

Make Errors Obvious.

Easy to understand logic of your own old codes.

Style is mandatory in any SW developer team.

Katja Mankinen Programming for Scientists 3 October 2018 24 / 31

Clean Code: Meaningful names

Use meaningful (intention-revealing) names

const int size;
int nCycles;
double time;

Better
const int sizeOfAlloccationInBytes;
int numberOfAllocations;
double timeToSleepBetweenAllocations;

Katja Mankinen Programming for Scientists 3 October 2018 25 / 31

Clean Code: Functions

Keep functions small (no more than 20 lines)

public void renderWebPage() {
StringBuilder content = getContentBuilder();
content.append("<html>");
content.append("<head>");
for (HeaderElement he : getHeaderElements()) {

String headerEntry = he.getStartTag() + he.getContent() +
he.getEndTag();

content.append(headerEntry);
}
content.append("</head>");
content.append("<body>");
for (BodyElement be : getBodyElements()) {

String bodyEntry = /* .. */
content.append(bodyEntry);

}
content.append("</body>");
content.append("</html>");
OutputStream output = new OutputStream(response);
output.write(content.toString().getBytes());
output.close();

}

Katja Mankinen Programming for Scientists 3 October 2018 26 / 31

Clean Code: Functions

Keep functions small (no more than 20 lines)

public void renderWebPage() {
startPage();
includeHeaderContent();
includeBodyContent();
endPage();
writePageToResponse();

}

private void startPage() { /* ... */ }

private void includeHeaderContent() { /* ... */ }

private void includeBodyContent() { /* ... */ }

private void endPage() { /* ... */ }

private void writePageToResponse() { /* ... */ }

Katja Mankinen Programming for Scientists 3 October 2018 27 / 31

Clean Code: Functions

Function

should do one thing,

should do it well,

should do it only,

with less arguments is easier to use.

calendar.SetDate(2014,2,3);

calendar.SetDate(todaysDate);

Katja Mankinen Programming for Scientists 3 October 2018 28 / 31

Clean Code: Comments

Intuitively understandable code is better than complex code with a lot
comments.

// Check to see if the employee is eligible for full benefits
if ((employee.flags & HOURLY_FLAG) != 0 && (employee.age > 65))

if (employee.isEligibleForFullBenefits())

Describe why you do something - not how!

// We need to remove duplicates from the names because
// a person cannot have the same name more than once.
Set<String> uniqueNames = new HashSet<String>(names);

Don’t comment obvious things

// Check if members have been initialized. If not, do it!
if (members == null) {

members = new ArrayList<Member>();
}

Katja Mankinen Programming for Scientists 3 October 2018 29 / 31

Final words

Aim for simplicity, whenever possible.

Stick to one coding style. Importance of code readability usually are
underestimated.

Use Coding Tools.

Use Google and Stack Overflow.

Procedural programming versus OOP → objects and data "versus" actions
and logic

The aim of this course is not to make you a wizard in C++, but to make
you a better scientist!

Take-home message: you will not learn only by reading or listening. Be
active! Try and error! Create a small project, use a coding language of your
own choice and become better!

Katja Mankinen Programming for Scientists 3 October 2018 30 / 31

Homework

Homework instructions are at Live@Lund.
Remember: homework is mandatory! But also remember: if you get stuck, you
can submit incomplete homework and always ask for help from me.

Katja Mankinen Programming for Scientists 3 October 2018 31 / 31

