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An introduction to ROOT
● Lecture 7 of MNXB01

– Inspired by Oxana’s lecture from last year

● Outline
– Computing in science 
– ROOT intro
– ROOT examples
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Linux and C++ are tools
● In physics computing is an integral part of the way 

we do science
– Calculations – numerical integration, FFT, etc.
– Simulations – event generators, detector studies
– Data storage – saving/accessing experimental results
– Reconstruction – detector signals → physical quantities
– Analysis – getting results out of the 
– Visualization – results and event displays
– + many more: e.g. Machine learning, Monitoring, 

Chip/electronics programming, Readout
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A Higgs → 2 photons 
candidate

● Reconstruction, 
e.g., tracks

● Visualization
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Higgs discovery
● Data analysis

● Visualization
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What computing elements were 
required to make this plot?

Think about the full path from detector to publication
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The full path
● Online

– Detector control 
system

– Data acquisition
– Online 

monitoring

● Offline
– Reconstruction
– Simulation
– Quality 

Assurance
– Data analysis
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What we will focus on this 
and next week

● Simulations
● Analysis
● Visualization
● Data storage
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Linux and C++ is not 
enough

● Inefficient to start all projects from 
scratch and develop the code we 
need for each project

● We can use existing frameworks to 
help us

● This week and next we will use 
ROOT



17/10-18 MNXB01 - Lecture 7: Intro to ROOT
Peter Christiansen (Lund)

9

Frameworks are smart

● But they also hide a lot of things 
under the hood (be careful) and can 
restrict what you want to do 
(choose wisely)



ROOT – an object-oriented analysis framework
• We will focus on ROOT – a specialized analysis framework developed at CERN

• Free and available for almost all platforms (LGPL 2.1 license)
• Relies on ROOT data format (a hierarchical database, actually)
• Has built-in C++ interpreter – you can use C++ in ROOT , like Python

• A complete ROOT tutorial normally takes several days; many such tutorials 
can be found on-line

• We will give a short introduction, re-using some official slides

Oxana Smirnova (Lund University) Programming for Scientists



What is ROOT?
• The ROOT system is an object-oriented (OO) framework for large scale data 

analysis (and even simulation)
• Written in C++
• Provides, among others,

• An efficient hierarchical OO database
• A C++ interpreter (CINT)
• Advanced statistical analysis (multi-dimensional histogramming, 

fitting, minimization and cluster finding algorithms)
• Visualization tools
• And much, much more

• The user interacts with ROOT via a graphical user interface, the 
command line or scripts

• The command and scripting language is C++ (thanks to the embedded 
CINT C++ interpreter)

• Large scripts can be compiled and dynamically loaded

Oxana Smirnova (Lund University) Programming for Scientists



How to get and set up ROOT
• On Ubuntu, it is available from universe repositories

• Install package root-system

• Otherwise, go to 
                               http://root.cern.ch
and download what you need

• Current stable version is 6.xx
• Versions 5.xx are widely used, too (does not matter for simple 

code)
• Installation from source is for brave people: will take some time and 

may produce odd error messages

• You can configure your ROOT preferences using ~/.rootrc file

• There are also scripts rootlogon.C, rootlogoff.C (executed on 
logon and logoff) and rootalias.C (loaded on logon)

• History is saved in ~/.root_hist file

• Read ROOT documentation for details (or Google “ROOT getting started”)

Oxana Smirnova (Lund University) Programming for Scientists
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Built-in ROOT C and C++ interpreter: CINT
• Main goal: provide a framework for C and  C++ “scripting” – somewhat like Python

• As a separate software, CINT code is available under an Open Source license

• It implements about 95% of ANSI C and 90% of ANSI C++

• It is robust and complete enough to interpret itself (90000 lines of C, 5000 lines of C++)

• Has good debugging facilities

• Has a byte code compiler

• In many cases it is faster than tcl, Perl and Python

• Large scripts can still be compiled for optimal performance (always recommended)

• CINT is used in ROOT:

• As command line interpreter

• As script interpreter

• To generate class dictionaries

• To generate function/method calling stubs

• In ROOT, the command line, script and programming language become the same

• But it does accepts also non-C++ statements (avoid this)

Oxana Smirnova (Lund University) Programming for Scientists
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Working with ROOT
● Type root at the command line prompt

– This starts a new “shell” from which you can work with 
data by using C++ instructions and scripts

– To exit, type .q
– To run a script (e.g. a tutorial), type 

.x <scriptname.C>
– To load functions from a file, type 

.L <scriptname.C>
● To compile (best!!!!!): .L <scriptname.C>+

– To execute a regular shell command, type 
.! <command>



Simple ROOT warm-up examples

• Note that by default ROOT uses double precision

• TF1 is a ROOT class for functions of 1 variable (1-dimensional functions)

• Draw is a method of the class

• Use TAB to show all methods: root [] f1.<TAB>

Oxana Smirnova (Lund University) Programming for Scientists

root [] 35 + 89.3
(const double)1.24299999999999997e+02
root [] float x = 45.6
root [] float y = 56.2 + sqrt(x);
root [] float z = x+y;
root [] x
(float)4.55999984741210938e+01
root [] y
(float)6.29527778625488281e+01
root [] z
(float)1.08552780151367188e+02

root [] TF1 f1("Function drawing test","sin(x)/x",0,10);
root [] f1.Draw();



Some ROOT conventions
• ROOT classes begin with T (like TF1 above)

• Non-class types end with _t  (for example, Int_t)

• Constants begin with k (for example, color red: kRed)

• ROOT uses machine-independent types, e.g.:
• Bool_t – Boolean (0=false 1=true)
• Char_t – signed character 1 byte
• Int_t – Signed integer 4 bytes
• Short_t – Signed short integer 2 bytes
• Long64_t – Signed long integer 8 bytes
• Float_t – Float 4 bytes
• Double_t – Float 8 bytes (a.k.a. double precision)

• But it also accepts int, float etc. BUT these can be machine dependent 

Oxana Smirnova (Lund University) Programming for Scientists



Scripts in ROOT
• Un-named Script: a simple short-cut (like a bash script)

• Starts with { and ends with }
• All variables are in the global scope
• No class definitions
• No function declarations
• No parameters

• Named Script: essentially, a C++ program (recommended)
• C++ functions
• Scope rules follow standard C++
• Function with the same name as the file is executed with a .x
• Parameters 
• Class definitions (derived from a compiled class at your own risk)

Oxana Smirnova (Lund University) Programming for Scientists



Examples of scripts
• “Macro” is a historical way of denoting scripts in ROOT

• Un-named Macro: hello.C

{

  cout << "Hello" << endl;

}

• Named Macro: say.C

void say(char * what = "Hello")

{

  cout << what << endl;

}

• Executing the Named Macro 

root [3] .x say.C

Hello

root [4] .x say.C("Hi there")

Hi there

Oxana Smirnova (Lund University) Programming for Scientists



Graphics in ROOT
• ROOT is no Photoshop, and graphics is designed for scientific results representation 

Oxana Smirnova (Lund University) Programming for Scientists

Hello

root [] TLine myline(.1,.9,.6,.6)

root [] myline.Draw()

root [] TText mytxt(.5,.2,”Hello”)

root [] mytxt.Draw()

• The Draw function adds the object to the 
list of primitives of the current graphics 
“pad”

• If a pad does not exist, it is automatically 
created with a default range [0,1]

• When the pad needs to be drawn or 
redrawn, the Paint function is called



Histogram classes in ROOT

Oxana Smirnova (Lund University) Programming for Scientists

• 1- and 2-dimensional histograms are most common

• C, S, F and D stand for the content type: D is double and recommended

• Profile histograms are 2-dim histograms “compressed” into 1-dim by calculating mean 
values

• 3-dimensional histograms are essentially graphs

1-Dim

2-Dim

3-Dim



Examples of histograms

Oxana Smirnova (Lund University) Programming for Scientists



Fitting in ROOT
• Histograms can be fitted with any function via TH1::Fit. Two fitting algorithms are 

supported:  Chi-square method  and Log Likelihood

• The user functions may be of the following types:

•    standard functions: gaus, landau, expo, poln
•    combination of standard functions; poln + gaus

•    A C++ interpreted function or a  C++ precompiled function

• When an histogram is fitted, the resulting function with its parameters  is added to the list 
of functions of this histogram. If the histogram is  made persistent (saved as a file), the list 
of associated functions is also persistent. 

• One can retrieve the function/fit parameters with calls such as:

•     Double_t chi2 = myfunc->GetChisquare();
•     Double_t par0 = myfunc->GetParameter(0); //value of 1st 

parameter

•     Double_t err0 = myfunc->GetParError(0);  //error on first 
parameter

Oxana Smirnova (Lund University) Programming for Scientists



Fitting example

Oxana Smirnova (Lund University) Programming for Scientists



Random numbers and histograms
•  TH1::FillRandom can be used to randomly fill an histogram using either of:

• the contents of an existing TF1 analytic function 

• another histogram

• Example: the following two statements create and fill an histogram 10000 times with a 
default Gaussian distribution of mean 0 and sigma 1:

   TH1F h1("h1","histo from a gaussian",100,-3,3);
   h1.FillRandom("gaus",10000);

• TH1::GetRandom can be used to return a random number distributed according the 
contents of an histogram

Oxana Smirnova (Lund University) Programming for Scientists
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The tree most important 
classes

● Histogram: binned → well defined and easy 
to manipulate
– Examples: TH1D, TH2D

● Graph: unbinned → can be used for 
anythings (but more difficult to manipulate)
– Examples: Tgraph, TGraphErrors 

● Function (can e..g fit both histograms and 
graphs)
– Exaples: TF1, TF2
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Interactive examples
● If you have a full installation you 

have tutorials under
$ROOTSYS/tutorials

● You can also find them online:
https://root.cern.ch/doc/master/group__Tutorials.html

https://root.cern.ch/doc/master/group__Tutorials.html
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Explanation of day 1 and 2 
exercises

● http://www.hep.lu.se/staff/christiansen/MNXB01/

http://www.hep.lu.se/staff/christiansen/MNXB01/
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