
17/10-18 MNXB01 - Lecture 7: Intro to ROOT
Peter Christiansen (Lund)

1

An introduction to ROOT
● Lecture 7 of MNXB01

– Inspired by Oxana’s lecture from last year

● Outline
– Computing in science
– ROOT intro
– ROOT examples

17/10-18 MNXB01 - Lecture 7: Intro to ROOT
Peter Christiansen (Lund)

2

Linux and C++ are tools
● In physics computing is an integral part of the way

we do science
– Calculations – numerical integration, FFT, etc.
– Simulations – event generators, detector studies
– Data storage – saving/accessing experimental results
– Reconstruction – detector signals → physical quantities
– Analysis – getting results out of the
– Visualization – results and event displays
– + many more: e.g. Machine learning, Monitoring,

Chip/electronics programming, Readout

17/10-18 MNXB01 - Lecture 7: Intro to ROOT
Peter Christiansen (Lund)

3

A Higgs → 2 photons
candidate

● Reconstruction,
e.g., tracks

● Visualization

17/10-18 MNXB01 - Lecture 7: Intro to ROOT
Peter Christiansen (Lund)

4

Higgs discovery
● Data analysis

● Visualization

17/10-18 MNXB01 - Lecture 7: Intro to ROOT
Peter Christiansen (Lund)

5

What computing elements were
required to make this plot?

Think about the full path from detector to publication

17/10-18 MNXB01 - Lecture 7: Intro to ROOT
Peter Christiansen (Lund)

6

The full path
● Online

– Detector control
system

– Data acquisition
– Online

monitoring

● Offline
– Reconstruction
– Simulation
– Quality

Assurance
– Data analysis

17/10-18 MNXB01 - Lecture 7: Intro to ROOT
Peter Christiansen (Lund)

7

What we will focus on this
and next week

● Simulations
● Analysis
● Visualization
● Data storage

17/10-18 MNXB01 - Lecture 7: Intro to ROOT
Peter Christiansen (Lund)

8

Linux and C++ is not
enough

● Inefficient to start all projects from
scratch and develop the code we
need for each project

● We can use existing frameworks to
help us

● This week and next we will use
ROOT

17/10-18 MNXB01 - Lecture 7: Intro to ROOT
Peter Christiansen (Lund)

9

Frameworks are smart

● But they also hide a lot of things
under the hood (be careful) and can
restrict what you want to do
(choose wisely)

ROOT – an object-oriented analysis framework
• We will focus on ROOT – a specialized analysis framework developed at CERN

• Free and available for almost all platforms (LGPL 2.1 license)
• Relies on ROOT data format (a hierarchical database, actually)
• Has built-in C++ interpreter – you can use C++ in ROOT , like Python

• A complete ROOT tutorial normally takes several days; many such tutorials
can be found on-line

• We will give a short introduction, re-using some official slides

Oxana Smirnova (Lund University) Programming for Scientists

What is ROOT?
• The ROOT system is an object-oriented (OO) framework for large scale data

analysis (and even simulation)
• Written in C++
• Provides, among others,

• An efficient hierarchical OO database
• A C++ interpreter (CINT)
• Advanced statistical analysis (multi-dimensional histogramming,

fitting, minimization and cluster finding algorithms)
• Visualization tools
• And much, much more

• The user interacts with ROOT via a graphical user interface, the
command line or scripts

• The command and scripting language is C++ (thanks to the embedded
CINT C++ interpreter)

• Large scripts can be compiled and dynamically loaded

Oxana Smirnova (Lund University) Programming for Scientists

How to get and set up ROOT
• On Ubuntu, it is available from universe repositories

• Install package root-system

• Otherwise, go to
 http://root.cern.ch
and download what you need

• Current stable version is 6.xx
• Versions 5.xx are widely used, too (does not matter for simple

code)
• Installation from source is for brave people: will take some time and

may produce odd error messages

• You can configure your ROOT preferences using ~/.rootrc file

• There are also scripts rootlogon.C, rootlogoff.C (executed on
logon and logoff) and rootalias.C (loaded on logon)

• History is saved in ~/.root_hist file

• Read ROOT documentation for details (or Google “ROOT getting started”)

Oxana Smirnova (Lund University) Programming for Scientists

http://root.cern.ch/
http://root.cern.ch/
http://root.cern.ch/

Built-in ROOT C and C++ interpreter: CINT
• Main goal: provide a framework for C and C++ “scripting” – somewhat like Python

• As a separate software, CINT code is available under an Open Source license

• It implements about 95% of ANSI C and 90% of ANSI C++

• It is robust and complete enough to interpret itself (90000 lines of C, 5000 lines of C++)

• Has good debugging facilities

• Has a byte code compiler

• In many cases it is faster than tcl, Perl and Python

• Large scripts can still be compiled for optimal performance (always recommended)

• CINT is used in ROOT:

• As command line interpreter

• As script interpreter

• To generate class dictionaries

• To generate function/method calling stubs

• In ROOT, the command line, script and programming language become the same

• But it does accepts also non-C++ statements (avoid this)

Oxana Smirnova (Lund University) Programming for Scientists

17/10-18 MNXB01 - Lecture 7: Intro to ROOT
Peter Christiansen (Lund)

14

Working with ROOT
● Type root at the command line prompt

– This starts a new “shell” from which you can work with
data by using C++ instructions and scripts

– To exit, type .q
– To run a script (e.g. a tutorial), type

.x <scriptname.C>
– To load functions from a file, type

.L <scriptname.C>
● To compile (best!!!!!): .L <scriptname.C>+

– To execute a regular shell command, type
.! <command>

Simple ROOT warm-up examples

• Note that by default ROOT uses double precision

• TF1 is a ROOT class for functions of 1 variable (1-dimensional functions)

• Draw is a method of the class

• Use TAB to show all methods: root [] f1.<TAB>

Oxana Smirnova (Lund University) Programming for Scientists

root [] 35 + 89.3
(const double)1.24299999999999997e+02
root [] float x = 45.6
root [] float y = 56.2 + sqrt(x);
root [] float z = x+y;
root [] x
(float)4.55999984741210938e+01
root [] y
(float)6.29527778625488281e+01
root [] z
(float)1.08552780151367188e+02

root [] TF1 f1("Function drawing test","sin(x)/x",0,10);
root [] f1.Draw();

Some ROOT conventions
• ROOT classes begin with T (like TF1 above)

• Non-class types end with _t (for example, Int_t)

• Constants begin with k (for example, color red: kRed)

• ROOT uses machine-independent types, e.g.:
• Bool_t – Boolean (0=false 1=true)
• Char_t – signed character 1 byte
• Int_t – Signed integer 4 bytes
• Short_t – Signed short integer 2 bytes
• Long64_t – Signed long integer 8 bytes
• Float_t – Float 4 bytes
• Double_t – Float 8 bytes (a.k.a. double precision)

• But it also accepts int, float etc. BUT these can be machine dependent

Oxana Smirnova (Lund University) Programming for Scientists

Scripts in ROOT
• Un-named Script: a simple short-cut (like a bash script)

• Starts with { and ends with }
• All variables are in the global scope
• No class definitions
• No function declarations
• No parameters

• Named Script: essentially, a C++ program (recommended)
• C++ functions
• Scope rules follow standard C++
• Function with the same name as the file is executed with a .x
• Parameters
• Class definitions (derived from a compiled class at your own risk)

Oxana Smirnova (Lund University) Programming for Scientists

Examples of scripts
• “Macro” is a historical way of denoting scripts in ROOT

• Un-named Macro: hello.C

{

 cout << "Hello" << endl;

}

• Named Macro: say.C

void say(char * what = "Hello")

{

 cout << what << endl;

}

• Executing the Named Macro

root [3] .x say.C

Hello

root [4] .x say.C("Hi there")

Hi there

Oxana Smirnova (Lund University) Programming for Scientists

Graphics in ROOT
• ROOT is no Photoshop, and graphics is designed for scientific results representation

Oxana Smirnova (Lund University) Programming for Scientists

Hello

root [] TLine myline(.1,.9,.6,.6)

root [] myline.Draw()

root [] TText mytxt(.5,.2,”Hello”)

root [] mytxt.Draw()

• The Draw function adds the object to the
list of primitives of the current graphics
“pad”

• If a pad does not exist, it is automatically
created with a default range [0,1]

• When the pad needs to be drawn or
redrawn, the Paint function is called

Histogram classes in ROOT

Oxana Smirnova (Lund University) Programming for Scientists

• 1- and 2-dimensional histograms are most common

• C, S, F and D stand for the content type: D is double and recommended

• Profile histograms are 2-dim histograms “compressed” into 1-dim by calculating mean
values

• 3-dimensional histograms are essentially graphs

1-Dim

2-Dim

3-Dim

Examples of histograms

Oxana Smirnova (Lund University) Programming for Scientists

Fitting in ROOT
• Histograms can be fitted with any function via TH1::Fit. Two fitting algorithms are

supported: Chi-square method and Log Likelihood

• The user functions may be of the following types:

• standard functions: gaus, landau, expo, poln
• combination of standard functions; poln + gaus

• A C++ interpreted function or a C++ precompiled function

• When an histogram is fitted, the resulting function with its parameters is added to the list
of functions of this histogram. If the histogram is made persistent (saved as a file), the list
of associated functions is also persistent.

• One can retrieve the function/fit parameters with calls such as:

• Double_t chi2 = myfunc->GetChisquare();
• Double_t par0 = myfunc->GetParameter(0); //value of 1st

parameter

• Double_t err0 = myfunc->GetParError(0); //error on first
parameter

Oxana Smirnova (Lund University) Programming for Scientists

Fitting example

Oxana Smirnova (Lund University) Programming for Scientists

Random numbers and histograms
• TH1::FillRandom can be used to randomly fill an histogram using either of:

• the contents of an existing TF1 analytic function

• another histogram

• Example: the following two statements create and fill an histogram 10000 times with a
default Gaussian distribution of mean 0 and sigma 1:

 TH1F h1("h1","histo from a gaussian",100,-3,3);
 h1.FillRandom("gaus",10000);

• TH1::GetRandom can be used to return a random number distributed according the
contents of an histogram

Oxana Smirnova (Lund University) Programming for Scientists

17/10-18 MNXB01 - Lecture 7: Intro to ROOT
Peter Christiansen (Lund)

25

The tree most important
classes

● Histogram: binned → well defined and easy
to manipulate
– Examples: TH1D, TH2D

● Graph: unbinned → can be used for
anythings (but more difficult to manipulate)
– Examples: Tgraph, TGraphErrors

● Function (can e..g fit both histograms and
graphs)
– Exaples: TF1, TF2

17/10-18 MNXB01 - Lecture 7: Intro to ROOT
Peter Christiansen (Lund)

26

Interactive examples
● If you have a full installation you

have tutorials under
$ROOTSYS/tutorials

● You can also find them online:
https://root.cern.ch/doc/master/group__Tutorials.html

https://root.cern.ch/doc/master/group__Tutorials.html

17/10-18 MNXB01 - Lecture 7: Intro to ROOT
Peter Christiansen (Lund)

27

Explanation of day 1 and 2
exercises

● http://www.hep.lu.se/staff/christiansen/MNXB01/

http://www.hep.lu.se/staff/christiansen/MNXB01/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

