
24/10-18 MNXB01 - Lecture 8: Intro to ROOT I/O and trees
Peter Christiansen (Lund)

1

An introduction to ROOT
I/O and trees

● Lecture 8 of MNXB01
– Inspired by René Brun’s 2007 summer

student lectures

● Outline
– ROOT I/O
– ROOT trees

Summer Students Lecture

10 July 2007

René Brun

CERN/PH/SFT

Introduction to ROOT

http://root.cern.ch

24/10-18 MNXB01 - Lecture 8: Intro to ROOT I/O and trees
Peter Christiansen (Lund)

3

Questions about
exercises?

24/10-18 MNXB01 - Lecture 8: Intro to ROOT I/O and trees
Peter Christiansen (Lund)

4

Text vs object oriented I/O
● What is the advantage of OO I/O?

24/10-18 MNXB01 - Lecture 8: Intro to ROOT I/O and trees
Peter Christiansen (Lund)

5

OO I/O
● The class can provide methods to

read and write data (dataformat)
– We can encapsulate also the I/O

24/10-18 MNXB01 - Lecture 8: Intro to ROOT I/O and trees
Peter Christiansen (Lund)

6

Implementation in ROOT

24/10-18 MNXB01 - Lecture 8: Intro to ROOT I/O and trees
Peter Christiansen (Lund)

7

TFile / TDirectory
 A TFile object may be divided in a

hierarchy of directories, like a Unix file
system.

 Two I/O modes are supported
 Key-mode (TKey). An object is identified by a

name (key), like files in a Unix directory. OK to
support up to a few thousand objects, like
histograms, geometries, mag fields, etc.

 TTree-mode to store event data, when the
number of events may be millions, billions.

24/10-18 MNXB01 - Lecture 8: Intro to ROOT I/O and trees
Peter Christiansen (Lund)

8

Example of key mode
void keywrite() {

 TFile f(“keymode.root”,”new”);

 TH1F h(“hist”,”test”,100,-3,3);

 h.FillRandom(“gaus”,1000);

 h.Write()

}

void keyRead() {

 TFile f(“keymode.root”);

 TH1F *h = (TH1F*)f.Get(“hist”);;

 h.Draw();

}

24/10-18 MNXB01 - Lecture 8: Intro to ROOT I/O and trees
Peter Christiansen (Lund)

9

A Root file pippa.root
with two levels of

directories

Objects in directory
/pippa/DM/CJ

eg:
/pippa/DM/CJ/h15

24/10-18 MNXB01 - Lecture 8: Intro to ROOT I/O and trees
Peter Christiansen (Lund)

10

ROOT uses 2 tricks (1/2)
● All objects that should be written

derive from the same base class
Tobject
https://root.cern.ch/doc/master/classTObject.html

– In that way we have a common set of
methods

– Also, we can use a common set of
containers

https://root.cern.ch/doc/master/classTObject.html

24/10-18 MNXB01 - Lecture 8: Intro to ROOT I/O and trees
Peter Christiansen (Lund)

11

ROOT uses 2 tricks (2/2)
● One has to include some macros

that generates the necessary
functions/streamers for each object

● In class description:
ClassDef(MyEvent, 1); //1=version

● In class implementation:
ClassImp(MyEvent) //no semi-colon!

24/10-18 MNXB01 - Lecture 8: Intro to ROOT I/O and trees
Peter Christiansen (Lund)

12

Self-describing files
 Dictionary for persistent classes written to

the file.
 ROOT files can be read by foreign readers
 Support for Backward and Forward

compatibility (one can bump class version)
 Files created in 2001 must be readable in

2015
 Classes (data objects) for all objects in a file

can be regenerated via TFile::MakeProject

ROOT Trees

24/10-18 MNXB01 - Lecture 8: Intro to ROOT I/O and trees
Peter Christiansen (Lund)

14

What is a tree?

Physics
event

Global
observables

Muon
tracks

Calorimeter
signals

Jets

Charged
tracks

24/10-18 MNXB01 - Lecture 8: Intro to ROOT I/O and trees
Peter Christiansen (Lund)

15

Why Trees ?
Trees have been designed to support very large

collections of objects. The overhead in memory
is in general less than 4 bytes per entry.

Trees allow direct and random access to any
entry (sequential access is the best)

Trees have branches and leaves. One can read
a subset of all branches.

High level functions like TTree::Draw loop on all
entries with selection expressions.

Trees can be browsed via TBrowser
Trees can be analyzed via TTreeViewer

24/10-18 MNXB01 - Lecture 8: Intro to ROOT I/O and trees
Peter Christiansen (Lund)

16

Memory <--> Tree
Each Node is a branch in the Tree

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

T.Fill()

T.GetEntry(5)

T

Memory

24/10-18 MNXB01 - Lecture 8: Intro to ROOT I/O and trees
Peter Christiansen (Lund)

17

Writing/Reading a Tree
class Event : public Something {
 Header fHeader;
 std::list<Vertex*> fVertices;
 std::vector<Track> fTracks;
 TOF fTOF;
 Calor *fCalor;
}

main() {
 Event *event = 0;
 TFile f(“demo.root”,”recreate”);
 int split = 99; //maximum split
 TTree *T = new TTree(“T”,”demo Tree”);
 T->Branch(“event”,&event,split);
 for (int ev=0;ev<1000;ev++) {
 event = new Event(…);
 T->Fill();
 delete event;
 }
 T->AutoSave();
}

main() {
 Event *event = 0;
 TFile f(“demo.root”);
 TTree *T = (TTree*)f.Get”T”);
 T->SetBranchAddress(“event”,&event);
 Long64_t N = T->GetEntries();
 for (Long64_t ev=0;ev<N;ev++) {
 T->GetEntry(ev);
 // do something with event
 }
}

Event.h

Write.C Read.C

24/10-18 MNXB01 - Lecture 8: Intro to ROOT I/O and trees
Peter Christiansen (Lund)

18

8 Branches of T

8 leaves of branch
Electrons

A double-click
to histogram

the leaf

Browsing a TTree with TBrowser

24/10-18 MNXB01 - Lecture 8: Intro to ROOT I/O and trees
Peter Christiansen (Lund)

19

The TTreeViewer

24/10-18 MNXB01 - Lecture 8: Intro to ROOT I/O and trees
Peter Christiansen (Lund)

20

Example

24/10-18 MNXB01 - Lecture 8: Intro to ROOT I/O and trees
Peter Christiansen (Lund)

21

Go through last exercises

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

