
24/10-18 MNXB01 - Lecture 8: Intro to ROOT I/O and trees
Peter Christiansen (Lund)

1

An introduction to ROOT
I/O and trees

● Lecture 8 of MNXB01
– Inspired by René Brun’s 2007 summer

student lectures

● Outline
– ROOT I/O
– ROOT trees

Summer Students Lecture

10 July 2007

René Brun

CERN/PH/SFT

Introduction to ROOT

http://root.cern.ch

24/10-18 MNXB01 - Lecture 8: Intro to ROOT I/O and trees
Peter Christiansen (Lund)

3

Questions about
exercises?

24/10-18 MNXB01 - Lecture 8: Intro to ROOT I/O and trees
Peter Christiansen (Lund)

4

Text vs object oriented I/O
● What is the advantage of OO I/O?

24/10-18 MNXB01 - Lecture 8: Intro to ROOT I/O and trees
Peter Christiansen (Lund)

5

OO I/O
● The class can provide methods to

read and write data (dataformat)
– We can encapsulate also the I/O

24/10-18 MNXB01 - Lecture 8: Intro to ROOT I/O and trees
Peter Christiansen (Lund)

6

Implementation in ROOT

24/10-18 MNXB01 - Lecture 8: Intro to ROOT I/O and trees
Peter Christiansen (Lund)

7

TFile / TDirectory
 A TFile object may be divided in a

hierarchy of directories, like a Unix file
system.

 Two I/O modes are supported
 Key-mode (TKey). An object is identified by a

name (key), like files in a Unix directory. OK to
support up to a few thousand objects, like
histograms, geometries, mag fields, etc.

 TTree-mode to store event data, when the
number of events may be millions, billions.

24/10-18 MNXB01 - Lecture 8: Intro to ROOT I/O and trees
Peter Christiansen (Lund)

8

Example of key mode
void keywrite() {

 TFile f(“keymode.root”,”new”);

 TH1F h(“hist”,”test”,100,-3,3);

 h.FillRandom(“gaus”,1000);

 h.Write()

}

void keyRead() {

 TFile f(“keymode.root”);

 TH1F *h = (TH1F*)f.Get(“hist”);;

 h.Draw();

}

24/10-18 MNXB01 - Lecture 8: Intro to ROOT I/O and trees
Peter Christiansen (Lund)

9

A Root file pippa.root
with two levels of

directories

Objects in directory
/pippa/DM/CJ

eg:
/pippa/DM/CJ/h15

24/10-18 MNXB01 - Lecture 8: Intro to ROOT I/O and trees
Peter Christiansen (Lund)

10

ROOT uses 2 tricks (1/2)
● All objects that should be written

derive from the same base class
Tobject
https://root.cern.ch/doc/master/classTObject.html

– In that way we have a common set of
methods

– Also, we can use a common set of
containers

https://root.cern.ch/doc/master/classTObject.html

24/10-18 MNXB01 - Lecture 8: Intro to ROOT I/O and trees
Peter Christiansen (Lund)

11

ROOT uses 2 tricks (2/2)
● One has to include some macros

that generates the necessary
functions/streamers for each object

● In class description:
ClassDef(MyEvent, 1); //1=version

● In class implementation:
ClassImp(MyEvent) //no semi-colon!

24/10-18 MNXB01 - Lecture 8: Intro to ROOT I/O and trees
Peter Christiansen (Lund)

12

Self-describing files
 Dictionary for persistent classes written to

the file.
 ROOT files can be read by foreign readers
 Support for Backward and Forward

compatibility (one can bump class version)
 Files created in 2001 must be readable in

2015
 Classes (data objects) for all objects in a file

can be regenerated via TFile::MakeProject

ROOT Trees

24/10-18 MNXB01 - Lecture 8: Intro to ROOT I/O and trees
Peter Christiansen (Lund)

14

What is a tree?

Physics
event

Global
observables

Muon
tracks

Calorimeter
signals

Jets

Charged
tracks

24/10-18 MNXB01 - Lecture 8: Intro to ROOT I/O and trees
Peter Christiansen (Lund)

15

Why Trees ?
Trees have been designed to support very large

collections of objects. The overhead in memory
is in general less than 4 bytes per entry.

Trees allow direct and random access to any
entry (sequential access is the best)

Trees have branches and leaves. One can read
a subset of all branches.

High level functions like TTree::Draw loop on all
entries with selection expressions.

Trees can be browsed via TBrowser
Trees can be analyzed via TTreeViewer

24/10-18 MNXB01 - Lecture 8: Intro to ROOT I/O and trees
Peter Christiansen (Lund)

16

Memory <--> Tree
Each Node is a branch in the Tree

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

T.Fill()

T.GetEntry(5)

T

Memory

24/10-18 MNXB01 - Lecture 8: Intro to ROOT I/O and trees
Peter Christiansen (Lund)

17

Writing/Reading a Tree
class Event : public Something {
 Header fHeader;
 std::list<Vertex*> fVertices;
 std::vector<Track> fTracks;
 TOF fTOF;
 Calor *fCalor;
}

main() {
 Event *event = 0;
 TFile f(“demo.root”,”recreate”);
 int split = 99; //maximum split
 TTree *T = new TTree(“T”,”demo Tree”);
 T->Branch(“event”,&event,split);
 for (int ev=0;ev<1000;ev++) {
 event = new Event(…);
 T->Fill();
 delete event;
 }
 T->AutoSave();
}

main() {
 Event *event = 0;
 TFile f(“demo.root”);
 TTree *T = (TTree*)f.Get”T”);
 T->SetBranchAddress(“event”,&event);
 Long64_t N = T->GetEntries();
 for (Long64_t ev=0;ev<N;ev++) {
 T->GetEntry(ev);
 // do something with event
 }
}

Event.h

Write.C Read.C

24/10-18 MNXB01 - Lecture 8: Intro to ROOT I/O and trees
Peter Christiansen (Lund)

18

8 Branches of T

8 leaves of branch
Electrons

A double-click
to histogram

the leaf

Browsing a TTree with TBrowser

24/10-18 MNXB01 - Lecture 8: Intro to ROOT I/O and trees
Peter Christiansen (Lund)

19

The TTreeViewer

24/10-18 MNXB01 - Lecture 8: Intro to ROOT I/O and trees
Peter Christiansen (Lund)

20

Example

24/10-18 MNXB01 - Lecture 8: Intro to ROOT I/O and trees
Peter Christiansen (Lund)

21

Go through last exercises

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

