
Florido Paganelli MNXB01-2018 Bash Scripting 1/49Tutorial 3

Other languages and C++
Writing bash scripts

Florido Paganelli
Lund University

florido.paganelli@hep.lu.se
Fysikum, Hus A, Room 403

Visiting time: 11:00-12:00 Every day

MNXB01 2018

mailto:florido.paganelli@hep.lu.se

Florido Paganelli MNXB01-2018 Bash Scripting 2/49Tutorial 3

Outline

Introduction to scripting

Bash

Scripts

Variables in bash: environment, binding, scope

Control structures

Datasets

Automation using scripting

Genesis of an algorithm

Florido Paganelli MNXB01-2018 Bash Scripting 3/49Tutorial 3

Notation
There's a set of symbols and idioms that are commonly used in command line tutorials and you should
know about. The description of the grammar of a command is often called synopsis, or brief summary.

Spacing. In general there is always a space between a command an every of its options, that is, every
word of a command that is shown in these slides.
However, in some cases it might be tricky to see it, and I will use the symbol . For example man bash

command
The boldface typeset is usually used to identify a command or part of the string that have to be written
exactly as you read them. In these slides I will also use the blue color, but you may not see it in the
printout.

command <argument>
The <> (angle brackets) are used to identify a mandatory argument of the command. The command
will NOT work without the things in the angle bracket.
The above usually means to run the command and to substitute the string <argument> with the
argument without angle brackets.
Remember, in most languages brackets have a special meaning. The special meaning of the angle
brackets was shown in the CLI tutorial.

command ARGUMENT
In man pages, sometimes capital letters are used instead of the angle brackets <>. The meaning is
exactly the same as the angle brackets, the capitalized string means mandatory. We will not use this
notation in this tutorial because it might be confusing, but you will find it in the linux man pages

command <argument> [<argument>]
The [] (square brackets) are used to identify and optional part of the command. The command will
work if you omit the content of the square brackets [].
However, if you add a second argument, it must be as defined within the angle brackets <>.

command [<argument1> | <argument2>]
The | (pipe symbol) is used to identify a mutually exclusive part of the command. You can use EITHER
<argument1> OR <argument2> but NOT both of them.
This is inherited from formal grammar notations.

Florido Paganelli MNXB01-2018 Bash Scripting 4/49Tutorial 3

Goals and non-goals of this
tutorial

Goals:

Being able NOT TO PANIC when somebody gives you something
you've never seen before (will happen in your entire career)

Being able to write a bash script.

Understanding the concepts of Variable, Environment,
binding, scope.

Being able to search for information depending on a task one
wants to achieve. (see references at the end of these slides!!!!)

Google is NOT always your friend if you don’t know what you’re
searching for.

Non-goal:

Become a script-fu master. It takes long time for the black belt :)

Become a coder. We cannot do this in a lecture, there's plenty of
dedicated courses out there

Florido Paganelli MNXB01-2018 Bash Scripting 5/49Tutorial 3

Scripting vs coding

The word script is taken from a theatrical
play script: a description of the environment
on stage, a sequence of lines and gestures
to do

There is no practical difference between
writing code in a compiled language and a
scripted one.

The main difference is that scripted
languages do not require compilation.

Florido Paganelli MNXB01-2018 Bash Scripting 6/49Tutorial 3

A bash script and its components

#!/bin/bash

put the output of cat in the variable CPUINFO
CPUINFO=$(cat /proc/cpuinfo | head -10)

write the content of CPUINFO to screen
echo "$CPUINFO"

 A bash script is nothing more that a sequence of commands
written in a file.

 The bash interpreter will process those in sequence, from the
top line to the bottom

 Like C++, is possible to define variables and control
structures in the scripting language.

 However, the bash script language has little to share with the
complexity of C++. All that it can do is to execute commands,
test conditions, and store things in variables.

 Consider the following code, a script called getcpuinfo.sh:

Florido Paganelli MNXB01-2018 Bash Scripting 7/49Tutorial 3

Anatomy of a bash script

#!/bin/bash

put the output of cat in the variable CPUINFO

CPUINFO= $(cat /proc/cpuinfo | head -10)

write the content of CPUINFO to screen

echo "$CPUINFO"

The first line has a special syntax: #! tells bash which
interpreter to use. It might be another shell!

Every other line starting with a
hash # is a comment. The
interpreter ignores everything
that follows until the end of
line. Useful to describe code to
human readers.

A variable definition is any string followed by a = symbol. It is a
convention to use capital letters.
Remember that case matters, cpuinfo is different from CPUINFO!

This tells bash to execute a
command and return its output.

A variable call is any variable name prefixed by the $ symbol.
Case does matter here. The quotes affect the output, that in this
case depends on how the echo command works.
The $ symbol stands for “give me the value contained in that
variable”

Florido Paganelli MNXB01-2018 Bash Scripting 8/49Tutorial 3

Executing a script
The script can be made executable as if it was a command.

To run or execute those in the current directory, prefix them

with ./
pflorido@tjatte:~> ./getcpuinfo.sh
processor : 0
vendor_id : GenuineIntel
cpu family : 6
model : 15
model name : Intel(R) Core(TM)2 CPU 6400 @ 2.13GHz
stepping : 6
cpu MHz : 2127.650

pflorido@tjatte:~> chmod +x getcpuinfo.sh

Florido Paganelli MNXB01-2018 Bash Scripting 9/49Tutorial 3

Variables, types in bash
A variable is an identifier, a name, for a memory location. Its definition
implies that the interpreter will find a free memory space for that
variable. As in C++, this space, if not initialized, can contain anything.

CPUINFO
10483...

CPUINFO = $(cat /proc/cpuinfo)

Initial Memory location
index

Assigning a value to a variable means putting such value inside that
memory location.

In BASH, variables have no explicitly defined type, because actually there is only
one type. It is implicitly assumed that the content is a string: a sequence of
characters. The maximum size depends on the system.

Allocation is always done dynamically depending on the assignment

10483... Contents of file /proc/cpuinfo

Var name Var type Associated size Initial tentative logical
memory location
pointer

value

larger Always string Depends on system
configuration

10483392805 Contents of /proc/
cpuinfo

010101010100010010101010
Some rubbish previously in memory

Florido Paganelli MNXB01-2018 Bash Scripting 10/49Tutorial 3

Functions

Notice the curly brackets {}. These delimit a block of code

The block of code above contains the definition of the function
getmeminfo() that takes in input no parameters

The MEMINFO variable is defined inside the definition of the function.

One can define functions to reduce complexity and
increase readability

#!/bin/bash

definition of a function that gets meminfo
getmeminfo(){
MEMINFO=$(cat /proc/meminfo)
}

call to the function, it will change the environment
getmeminfo

write the content of MEMINFO to screen
echo "$MEMINFO"

Florido Paganelli MNXB01-2018 Bash Scripting 11/49Tutorial 3

Environment, binding
All the variable and function names
“live” in a space called environment.
You can think of it as a table in the
compiler or interpreter memory
containing all variable names and their
associations with memory chunks.

A name is said to be bound to that
environment when its value is
associated to a memory index in that
environment. In the table on the left we
can see some bindings.

When we define a variable, the variable
name is added to the environment

Environment Variable
name

Starting
memory
index

global PWD 48329

global SHELL 483985

global PATH 3412

cpuinfo.sh CPUINFO 10289

meminfo.sh MEMINFO 18458

meminfo.sh getmeminfo() 3515

In languages like BASH, we do not see memory indexes, they’re
transparent to the developer. It’s just to give you an idea of what happens
behind the scenes.
Binding can be:

Static, that is, decided at compile time
Dynamic, that is, decided at runtime
(yes one can change where in the memory that variable is pointing)

Florido Paganelli MNXB01-2018 Bash Scripting 12/49Tutorial 3

Visibility, scope
A variable is visible in an environment when its
binding is present in that environment, that is:

There exists a variable name in the environment

That variable name is associated to a memory location
(this depends on languages)

Usually a function has its own environment, that is, a
set of variables in its own environment, and can see
the variables in other environments according to some
rules. These rules define the scope, or visibility, of a
variable.

In the case of BASH, functions do not have own
environment. The scope or visibility of a variable in
bash is limited to a bash instance and all its
children. Let's see some examples.

Florido Paganelli MNXB01-2018 Bash Scripting 13/49Tutorial 3

The BASH environment: export

Everytime one opens a terminal,
the program bash is executed
and a new environment is
created.

1 .Run the export command. You'll
see all the environment variables
in the current bash session.

2. Create a new environment
variable:
 export MYENV1=”This is a global env var”

3. Find the variable by running
export, or just print its content with
 echo $MYENV1

New terminal environment
all global variables

Terminal environment after
export MYENV1=”This is a global env var”

MYENV

Global Predefined
Vars

Global Predefined
Vars

export MYENV1=”This is a global env var”

Florido Paganelli MNXB01-2018 Bash Scripting 14/49Tutorial 3

The BASH environment: export

4. Now open another bash
instance:

Write the command bash and press enter

Run the command export. You will find
that MYENV1 is still there.

The environment is said to be
inherited from the father process.

This happens every time you start a
bash script => Starting a bash script is
equivalent to executing the command
bash and then a sequence of commands.

6. Open another terminal LXTerm and run
export.

MYENV1 should not be there.
There is no environment inheritance
between terminal windows.

Close the terminal and go back to the old
one where MYENV1 is defined.

New terminal environment
all global variables

Terminal environment after
export MYENV1=”This is a global env var”

MYENV
Global Predefined

Vars
Global Predefined

Vars

Terminal environment after
running bash

Inherits all the parent vars

New LXTerm terminal environment

Global Predefined
Vars

≠

Terminal environment after
export MYENV1=”This is a global env var”

MYENVGlobal Predefined
Vars

Execute “bash”

Florido Paganelli MNXB01-2017 - Working with git 15/49Tutorial 3

During the tutorial you'll be asked many times to do things
with files. For those of you not familiar with file editing,
here's a small how-to.

There are many ways of creating a file.
One way is by using a text editor

The favorite text editor for this course is called geany. Can
you find the icon in the menu? Open it by clicking on the
icon.

Alternatively, open a terminal and write the
command:
 geany &

(the & symbol sends the command execution in background, see tutorial 2!)

Creating and editing a file

Florido Paganelli MNXB01-2017 - Working with git 16/49Tutorial 3

Editing and saving a file:
create new

Florido Paganelli MNXB01-2017 - Working with git 17/49Tutorial 3

Editing and saving a file:
write something

Florido Paganelli MNXB01-2017 - Working with git 18/49Tutorial 3

Editing and saving a file:
save or save as

Florido Paganelli MNXB01-2017 - Working with git 19/49Tutorial 3

Editing and saving a file:
choose location and filename

1

2

3

Florido Paganelli MNXB01-2017 - Working with git 20/49Tutorial 3

Editing and saving a file

Florido Paganelli MNXB01-2018 Bash Scripting 21/49Tutorial 3

Exercises
 Exercise 3.1: Open geany, write and save the
following code as file getcpuinfo.sh

#!/bin/bash

put the output of cat in the variable CPUINFO
CPUINFO=$(cat /proc/cpuinfo | head -10)

write the content of CPUINFO to screen
echo "$CPUINFO"

 Exercise 3.2: execute getcpuinfo.sh as
described in slide 8.

Florido Paganelli MNXB01-2018 Bash Scripting 22/49Tutorial 3

Exercises

#!/bin/bash -x

Exercise 3.3:
What is the predefined PATH variable?

During the course we ran commands that did not need a ./ in front. The reason
is: the directory where our code is placed is not known by the system as a place
where executables are.

This list is contained in the predefined variable PATH.
Modify the last line as below, save and execute the script again:

echo “PATH value is $PATH”

Exercise 3.4:

Enable Debugging to debug your script, that is, see what is
doing while running, modify the first line as below:

Save the file and execute it again. See the differences in the
output.

Florido Paganelli MNXB01-2018 Bash Scripting 23/49Tutorial 3

Tutorial continued: download
the bash examples from git

Open a terminal.

Change Directory into your home.
cd ~

Create a directory for your own activity.
The directory name should be your name and the first three letters
of your last name.
For example, my name is Florido Paganelli and I will use floridopag but
you must use yours.

mkdir floridopag

cd floridopag

Use GIT (we will see it later in the course) to download the examples for
this tutorial
git clone https://github.com/floridop/MNXB01-2018.git MNXB01-2018

Change directory to the tutorial folder (I will call it like this in the
slides!):

cd MNXB01-2018/floridop/Tutorial3/bash

Florido Paganelli MNXB01-2018 Bash Scripting 24/49Tutorial 3

BASH environment: scope
Exercise 3.5: Consider the bash script envtest.sh in
the tutorial folder with the following content:

#!/bin/bash

test if an environment variable is defined
if ["x$MYENV1" == "x"]; then
 echo "MYENV1 not defined in the environment or empty. Please run"
 echo 'export MYENV1="This is my first environment variable"'

 # I had to comment/remove the next line otherwise sourcing this
 # script will close your terminal if MYENV1 is not define!
 # Uncomment to try ;)
 #exit 1;
fi

create an environment variable
MYENV2="This is my second environment variable"

write the content of the environment vars to screen
echo "Content of MYENV1: $MYENV1"
echo "Content of MYENV2: $MYENV2"

echo "Now check if MYENV2 still exists, with the command"
echo 'echo $MYENV2'

Florido Paganelli MNXB01-2018 Bash Scripting 25/49Tutorial 3

BASH environment: scope
Run it: ./envtest.sh

Try to run the command:
 echo “Content of MYENV2: $MYENV2"

The “father” environment (where you ran the
bash command) DOES NOT inherit from
“children” (executed commands), but bash
scripts executed inside it have their own
environment that inherits from the father.

bash

bash

env1

env1 env2

father

child

bash
env1 env2 env3

child

child

Florido Paganelli MNXB01-2018 Bash Scripting 26/49Tutorial 3

Importing an environment

In bash, there is a command that allows you to
copy the environment defined in a script to another
script or bash instance. This command is source

Careful! The command also executes
EVERYTHING inside the BASH script!

If you now try

source ./envtest.sh
echo “Content of MYENV2: $MYENV2"
You'll see that the output of export will contain
also MYENV2.
MYENV2 is now in the father bash environment.

Florido Paganelli MNXB01-2018 Bash Scripting 27/49Tutorial 3

Customizing your environment

When opening a terminal or starting bash, there are a few key files that are processes
to initialize your shell environment.

Depending on the distribution and the shell, these may vary. Some are system files
and you cannot change them, these are processed first when opening a shell. But you
can override them inside your user files, that are processed after the system ones.

System files:
/etc/profile

All files in /etc/profile.d/
/etc/bash.bashrc

User files. These are hidden, hence their names starts with a dot.
You can see them with ls -a ~

~/.profile

~/.bashrc

~/.bash_profile

You can inspect the content of those files using cat, less or gedit. Ask me about
things you do not understand.

IMPORTANT: .bashrc should NEVER contain code that generates output when .bashrc
is executed.

Florido Paganelli MNXB01-2018 Bash Scripting 28/49Tutorial 3

Customizing your environment
exercise

We will add an alias to the ls command, llh, that shows
us numbers in a human readable format.

The alias command is used for that. Try it and you will see
the list of active aliases.

Exercise 3.6 – add llh alias

1. backup your existing .bashrc file:
cp ~/.bashrc ~/bashrc_20180914backup

2. Open .bashrc with geany
geany ~/.bashrc &

3. Add at the end of the file the command:
alias llh=’ll -h’

4. Import the newly created alias by sourcing the new bashrc:
source ~/.bashrc

5. Test that you can use the newly added llh command!

Florido Paganelli MNXB01-2018 Bash Scripting 29/49Tutorial 3

Predefined variables in scripts
Prefixed by the $ symbol, they are instantiated automatically in bash at the start of the
script.

Script arguments: $#, $0, $1, $2….

$# is the number of arguments passed to the script

$0 is the name of the script itself as called to be executed

$1..n is each string that follows the name of the script.

Process info and status codes:

$$: process identifier (PID) of the script itself.
The PID is an integer number that the operating systems assigns to a binary file once it is ran, that
is, when it becomes a process. It uniquely identifies a running program until the machine is shut
down. See Lecture 3 slides.

$?: exit code of the last executed command (0 if it ended well, any other number otherwise)

$!: PID of last command executed in background

...

Various:

$PATH: list of paths where executable commands are

$PS1: prompt format

$SHELLOPTS: options with which the shell is run

$UID: User ID of the user running the script

...

Florido Paganelli MNXB01-2018 Bash Scripting 30/49Tutorial 3

Predefined variables example

#!/bin/bash

predefinedvars.sh
call with: ./predefinedvars.sh arg1 arg2 arg3
#

print out info about arguments to this script
echo “Number of arguments: $#”
echo “Name of this script: $0”
echo “Arguments: $1 $2 $3 $4”

print this script's Process IDentifier:
echo “PID is $$”

Run the script. Remember to chmod +x predefinedvars.sh to make it
executable!

Exercise 3.7: check the output of some other predefined variable, in particular
$* and $@

Florido Paganelli MNXB01-2018 Bash Scripting 31/49Tutorial 3

Conditions
Conditions are of different kinds depending on the languages.
The only condition that BASH can check is whether a
command execution terminates successfully.

An exit value of 0 is TRUE (termination successful),
all other values are FALSE (termination unsuccessful).

The way to specify conditions is as follow:

The square bracket [] or the test command can be used.
Documentation: man test

Example: test -e <filename> checks if a file exists; if the file exists, the predefined
variable $? will contain 0, otherwise 1.

Try echo $? after running a test to see the exit value of the test command.

The double square bracket or extended test
[[<some test command>]]
Documentation: execute man bash and type: /\[\[expression

Example: [[-e /etc/services]]

The double parentheses for arithmetical expansion and logical operations.
<a> and should be integers.
 ((<a> &&))
Documentation: execute man bash and type: /\(\(expression

Florido Paganelli MNXB01-2018 Bash Scripting 32/49Tutorial 3

Conditions: Exercises
Exercise 3.8: Execute the following commands:

test -e /etc

echo $?

test -e /thisfiledoesnotexist

echo $?

[-e /etc]

echo $?

[-e /thisfiledoesnotexist]

echo $?

Exercise 3.9: Execute the following commands:

 [[-e /etc]]

echo $?

 [[-e /doesnotexist]]

echo $?

Exercise 3.10: Execute the following commands. Do you understand the meaning and results? If not, ask me.

true

echo $?

false

echo $?

((0 && 0))

echo $?

((1 && 0))

echo $?

((1 && 1))

echo $?

Florido Paganelli MNXB01-2018 Bash Scripting 33/49Tutorial 3

Control structures

Enable the machine to decide on actions
depending on certain conditions.
(if..then...else..fi)

Allow the code to loop until a certain
condition is met (while...do...done)

Allow the code to loop for a definite
number of times or over a list of objects
(for...do...done)

Florido Paganelli MNXB01-2018 Bash Scripting 34/49Tutorial 3

Control structures:
if ... then … else .. fi

The BASH syntax is as follows:

 if <condition>; then
 <command1>;[<command2>;…]

 else
 <commandA>;[<commandB>;…]

 fi

Florido Paganelli MNXB01-2018 Bash Scripting 35/49Tutorial 3

Control structures:
if ... then … else .. fi

-le = less than or equal

#!/bin/bash
testif.sh
run with: ./testif.sh arg1 arg2 arg3
#
test that at least two arguments are passed to the script

if [[$# -le 2]]; then
 echo "Not enough arguments. Must be at least 3!";
 # exit with error, not zero
 exit 1;
else
 echo "More than 2 arguments. Good!";
 # exit without error, zero
 exit 0;
fi

Florido Paganelli MNXB01-2018 Bash Scripting 36/49Tutorial 3

The exit command

Exit is used to terminate the program exactly where exit is called, that is,
to break cycles and exit the program.

It takes in input the return value of the process:

0 for SUCCES

1 for ERROR

If you code cannot continue due to an error, you should always exit 1.
Otherwise the code will continue running without the required information.

You can test the exit value by checking the $? variable:
 echo $?

This works with any linux program: if there is an error, the process should
exit with $? ¹ 0

Exercise 3.11: check the exit value when you input no argument or three
arguments to ./testif.sh [<argument1> <argument2> ...]

Florido Paganelli MNXB01-2018 Bash Scripting 37/49Tutorial 3

Control structures:
for ... do … done

Repeat something for a predefined
number of times or for each element in a
list.

Syntax:
for <i> in <list>; do
 <command1>;[<command2>;…]
done

Florido Paganelli MNXB01-2018 Bash Scripting 38/49Tutorial 3

Control structures:
for ... do … done

Print types of files in some directory,
default to the /etc directory

#!/bin/bash
listfilestypes.sh
run with: ./listfilestypes.sh <directory>
#
Print the argument values
TARGETDIR=$1

if ["x$TARGETDIR" == "x"]; then
 TARGETDIR='/etc'
 MESSAGE="No argument found. Listing filetypes for the /etc directory by default"
else
 MESSAGE="Scanning filetypes for the ${TARGETDIR} directory"
fi

echo "$MESSAGE"

for somefile in ${TARGETDIR}/*; do
 echo "This is the file $somefile, with type:";
 # the file command tells you the type of a file.
 file $somefile
done

Florido Paganelli MNXB01-2018 Bash Scripting 39/49Tutorial 3

Calling variables values in
different ways

$VAR returns the value contained in the
variable called VAR.

${VAR} returns the value contained in the
variable called VAR but it makes easier to spot
the boundaries of the variable name. It can be
used to concatenate string values and strings,
like in the previous code:
 ${TARGETDIR}/*;
it shows clearly that the name of the variable is
TARGETDIR

Florido Paganelli MNXB01-2018 Bash Scripting 40/49Tutorial 3

Control structures:
for ... do … done

Print the arguments using different
condition approaches

#!/bin/bash
testfor.sh
run with: ./testfor.sh arg1 arg2 arg3 ...
#
Print the argument values

echo “Using lists of elements”
index=1 # Reset argument counter
for arg in "$@"; do
 echo "Arg #$index = $arg"
 let "index+=1"
 done # $@ sees arguments as separate words.

echo “Using C syntax for the condition”
for ((i=1 ; i <= $# ; i++)); do
 echo "Argument $i is ${!i}";
done

● #$var forces the content
of var to be a number

● Parameter substitution
 ${!var} Gets the value
of a variable with the
name $var instead of
var

Florido Paganelli MNXB01-2018 Bash Scripting 41/49Tutorial 3

Control structures:
while … do … done

Keeps doing something as long as
<condition> is satisfied.

Syntax:
while <condition>; do
 <command1>;[<command2>;…]
done

Florido Paganelli MNXB01-2018 Bash Scripting 42/49Tutorial 3

Control structures:
while … do … done

Ask the user to enter a variable value
(using the read command) until the string
end is entered

#!/bin/bash
testwhile.sh
run with: ./testwhile.sh
#
Continue asking numbers until the user writes “end”

while ["$var1" != "end"]; do # while test "$var1" != "end"
 echo "Input variable value (end to exit) "
 read var1 # Not 'read $var1' (why?).
 echo "variable value = $var1" # Need quotes because of "#" . . .
 # If input is 'end', echoes it here.
 # Does not test for termination condition until top of loop.
echo
done
exit 0

Florido Paganelli MNXB01-2018 Bash Scripting 43/49Tutorial 3

Control Structures: Exercises

Exercise 3.12: Change the iftest.sh
code to complain if the user did not write at
least 5 command line arguments

Exercise 3.13: Change the
listfiletypes.sh code to list the types of
files in the folder /tmp by default, that is, if
no command line argument is passed.

Exercise 3.14: Change the testwhile.sh
code to exit when the user writes bye!

Florido Paganelli MNXB01-2018 Bash Scripting 44/49Tutorial 3

Datasets

A dataset is some digital collection, maybe a file or a set of files,
that contains data we want to use.

A dataset usually has his own format.

A format is a set of rules that define in a rigorous manner how the
content of the dataset should be read, what are their meanings and the
relationship among the dataset information

The format can be a well know data format, more or less standardized,
or some custom data format that one needs to learn

A description of the format is usually provided by the community that
generated the dataset. It is very rare that a dataset contains
information about its format.

Very common format names
CSV (comma separated values)

XML (eXperimental Markup Language)

JSON (JavaScript Object Notation)

Exercise 3.15 : Search for those names and “specification” on Google
and learn about what they look like.

Florido Paganelli MNXB01-2018 Bash Scripting 45/49Tutorial 3

Sample data file: investigation
<?xml version="1.0" encoding="UTF-8" ?>

<Data>
<Game>
<id>1558</id>
<GameTitle>Harvest Moon Animal Parade</GameTitle>
<ReleaseDate>11/10/2010</ReleaseDate>
<Platform>Nintendo Wii</Platform>
</Game>
<Game>
<id>32234</id>
<GameTitle>Busy Scissors</GameTitle>
<ReleaseDate>11/02/2010</ReleaseDate>
<Platform>Nintendo Wii</Platform>
</Game>
<Game>
<id>890</id>
<GameTitle>Rayman Raving Rabbids TV Party</GameTitle>
<ReleaseDate>11/18/2008</ReleaseDate>
<Platform>Nintendo Wii</Platform>
</Game>
<Game>
<id>908</id>
<GameTitle>Super Mario Galaxy 2</GameTitle>
<ReleaseDate>05/23/2010</ReleaseDate>
<Platform>Nintendo Wii</Platform>
</Game>

What can we say by observing
this data?

• It seems to be structured in
some way.

• There is some metadata
information at the top that
might hint at some known
format. Search “XML” on
google?

Can we guess something about
the structure?

● It seems to have opening and
closing tags <tag></tag>

● The tags seems to represent
a tree structure

Florido Paganelli MNXB01-2018 Bash Scripting 46/49Tutorial 3

Automation and
composition of languages

Cornerstone of open source programming:
if something exist that does a task, and it does it
good, use it and do not rewrite code

Automation of repetitive tasks

Make use of interoperability within languages

Technique: identify subproblems and separate
tasks, increasing “debuggability”

Choose the right command/language for each
subtask

Florido Paganelli MNXB01-2018 Bash Scripting 47/49Tutorial 3

Genesis of an algorithm:
a top down approach

Write a list of each main task translating
the description of the problem.

Open geany and start writing down as
comments the steps to the algorithm. You
can write that on paper first.

An example of this process is the
homework skeleton in git.

Florido Paganelli MNXB01-2018 Bash Scripting 48/49Tutorial 3

Homework 3

Follow the instructions at:
https://github.com/floridop/MNXB01-2018/blob/master/floridop/HW3/README.md

Hint: Check the solutions of previous year
assignments on the course webpage:
http://www.hep.lu.se/courses/MNXB01/index-2017.html
http://www.hep.lu.se/courses/MNXB01/index-2016.html
http://www.hep.lu.se/courses/MNXB01/index-2015.html

https://github.com/floridop/MNXB01-2018/blob/master/floridop/HW3/README.md
http://www.hep.lu.se/courses/MNXB01/index-2017.html
http://www.hep.lu.se/courses/MNXB01/index-2016.html
http://www.hep.lu.se/courses/MNXB01/index-2015.html

Florido Paganelli MNXB01-2018 Bash Scripting 49/49Tutorial 3

References

Bash scripting:
http://tldp.org/LDP/abs/html/

Interactive aid:
https://explainshell.com

http://tldp.org/LDP/abs/html/
https://explainshell.com/

