
Florido Paganelli MNXB01-2018 - Working with git 1/50Tutorial 4

Working with GIT

Florido Paganelli
Lund University

florido.paganelli@hep.lu.se
Fysikum, Hus A, Room 403

Visiting time: 11:00-12:00 Every day

MNXB01 2018

mailto:florido.paganelli@hep.lu.se

Florido Paganelli MNXB01-2018 - Working with git 2/50Tutorial 4

Required Software
Git - a free and open source distributed version control
system

Gitg – a fast git repository viewer (there are many!)

Command line installation (bash):

sudo apt-get install git gitg
Note: this software is NOT installed by default by the Lubuntu system installation.

Platform Package names

Ubuntu, Debian git, gitg

RedHat, CentOS, Fedora, SuSE git, gitg

Windows http://www.jamessturtevant.com/posts/5-Ways-to-
Install-git-on-Windows/

Mac OS http://www.macworld.co.uk/how-to/mac-software/ho
w-use-git-github-on-your-mac-3639136/

http://www.jamessturtevant.com/posts/5-Ways-to-
http://www.macworld.co.uk/how-to/mac-software/how-use-git-github-on-your-mac-3639136/
http://www.macworld.co.uk/how-to/mac-software/how-use-git-github-on-your-mac-3639136/

Florido Paganelli MNXB01-2018 - Working with git 3/50Tutorial 4

Outline

What are version/revision control systems

Generic concepts of version/revision systems

git

Generic concepts of git

git tutorial

Additional useful commands

Florido Paganelli MNXB01-2018 - Working with git 4/50Tutorial 4

Notation
I will be using the following color code for showing
commands:

https://github.com/floridop/MNXB01-2017

Florido Paganelli MNXB01-2018 - Working with git 5/50Tutorial 4

Why version/revision systems?

Say you wrote some computer program in a text file.

You discover a bug, something that does not work as it
should, and you want to change it.

You fix the bug, save the file. Try the program again and… it
doesn't work anymore!

What went wrong? Would be nice if you could compare
what you changed...

Solution: make a backup copy before every (important)
change!

Florido Paganelli MNXB01-2018 - Working with git 6/50Tutorial 4

If you do many changes, you
might not remember what
changes you made. Version
systems allow you to attach a
comment to the change.

If you want to share your code
with other developers, it's nice if
everybody can see who changed
what. Version systems allow you
to author the changes so the
others know what you're done.
This helps sharing code.

Why version/revision systems?

Florido Paganelli MNXB01-2018 - Working with git 7/50Tutorial 4

Summary:

Backup each change in your code

Compare different versions of your code

Comment and annotate each change

Share among developers

Why version/revision systems?

Florido Paganelli MNXB01-2018 - Working with git 8/50Tutorial 4

Version systems: products and
features

Product staging Local
commit

diff Fork/branch
management

Distributed/
Collaborative

Compatibility

CVS
(Current Version
Stable)

N N Y Y N ?

SVN
(SubVersioN)

N N Y N N ?

Git Y Y Y Y Y SVN
CVS

Florido Paganelli MNXB01-2018 - Working with git 9/50Tutorial 4

What and why git

Was created by Linus Torvalds especially for kernel
development

Highly distributed community contributions

Lots of people forking and writing their own version of drivers
(later I'll explain this term)

Nowadays there are many collaborative websites
systems that use it to share code (github, gitlab) and
make it easier to integrate everyone's work with
discussion and code revision/testing tools

Is being used by many because is a free solution that
helps distributed cooperation

Becoming the most used among research projects

In other words, mostly fashion

Florido Paganelli MNXB01-2018 - Working with git 10/50Tutorial 4

Git ain’t the best.

https://xkcd.com/1597/

Florido Paganelli MNXB01-2018 - Working with git 11/50Tutorial 4

Why using git in this course

The VM you are using can be deleted any time. Everything
you save in its virtual harddisk can be lost anytime.

The VM runs on the machine you’re sitting and it can be
accessed by other users. Other users can change what you
did on the machine and you will lose all data.

You will become a better programmer (but not necessarily
a better person)

Suggestion: at the end of each tutorial, push your changes
to the remote github repository we will create in the
Homework.

The final course project material you will create can be
only handed out using a github repository, so get familiar
with git!

Florido Paganelli MNXB01-2018 - Working with git 12/50Tutorial 4

Concepts of version systems in git
Repository: A database that contains the
list of changes made.

A local git repository is shared locally on
your machine in the .git invisible folder

A remote git repository is shared on a
remote server and can be reached using
a URL, like
https://github.com/floridop/MNXB01-2018.git

A bare git repository can be stored in
any folder and contains data in a form
that only the git code understands. Can
be used to have multiple copies of the
same repository. It can be used to share
a repository without GitHub.

https://github.com/floridop/MNXB01-2018.git

Concepts of version systems in git

Concepts of version systems in git
Working directory: the latest version of a set of files that
you want to work on. This is usually local to your machine.

It is usually the result of a clone, an exact copy, of some
remote repository

You can synchronize the local git repository with remote
ones using the push (send changes) and pull (retrieve
changes) commands.

A bit like DropBox but NOT automatic.

Florido Paganelli MNXB01-2018 - Working with git 15/50Tutorial 4

Concepts of version systems

Revisions or commit ID: every
“version” of one or more files gets a
revision tag. This can be a number, a
label, a string.

In git usually is an hash*, a strange
sequence of symbols. It:

Identifies the repository and other details of
when the changes where made

It’s universally unique, everywhere in the
world that commit will represent a defined
sequence of changes.

For this reason these systems are also
known as Revision Systems, as every
revision gets a label that depends on time
and person who made the change.

*Hash: a special injective function that returns a value from
a finite set of strings. The return values are unique under
certain conditions.

Florido Paganelli MNXB01-2018 - Working with git 16/50Tutorial 4

Concepts of version systems
git specifics

A repository might have one or more branches, that is, different
version of the same repository which modify or propose different
features.

They're called branches because they can be visualized like a tree
as they diverge from some initial branch, usually called master.
Every branch has a name.

The latest commit of each branch is called the HEAD of that
branch.

Previous Revision #:

hash1
Previous Revision #:

hash2
Previous Revision #:

hash3
Current Revision #:

hash4

Previous Revision #:

hash7
Current Revision #:

hash8

Current Revision #:

hash9

Branch

master

Branch

coolfeature

Branch

dangerouschanges

HEAD

Florido Paganelli MNXB01-2018 - Working with git 17/50Tutorial 4

Concepts of version systems
git branch

Every branch history is a continuation of the
history where the master was branched.

It is possible to branch from a branch, not just
from the master. Use with care, can be
confusing!

Previous Revision #:

hash1
Previous Revision #:

hash2
Previous Revision #:

hash3
Current Revision #:

hash4

Previous Revision #:

hash7
Current Revision #:

hash8

Current Revision #:

hash9

Branch

master

Branch

coolfeature

Branch

dangerouschanges

Concepts of version systems
git branch

A branch can be made active with the checkout
operation. When a branch is checked out you will
be able to see its files in your working
directory.

✔ To check out a branch means to select a
certain history of changes.

Concepts of version systems
git add

If one modifies or changes files contained in a
certain revision, git can see it, and reports to the
user.

Git gives the choice to add (include) these
changes to the database.

Concepts of version systems
git add

Once files are added, they are marked to be part
of a next revision, but they’re not yet saved in
the database.

In git slang, they’re staged – shortlisted to be
part of the next commit.

Concepts of version systems
git commit

Staged files will then be actually become part of
a new revision in the database once the user
commits them.

Florido Paganelli MNXB01-2018 - Working with git 22/50Tutorial 4

What is a software fork

In software engineering, a fork of a software
project A it's a copy of the software source code
of A to develop features for a project B,C,... that
follow completely independent choices from
project A.

project A
project A

project B

project C

All projects share the same
code until this point in time

past / present

fu
tu

re

Florido Paganelli MNXB01-2018 - Working with git 23/50Tutorial 4

Preparing for the tutorial

Create a folder in your home folder

mkdir ~/gittutorial/

cd ~/gittutorial

Download the tutorial app (also available on L@L):
For the LubuntuVM (32 bit):
wget http://www.hep.lu.se/staff/paganelli/fileshare/gitmnxb01-ia32.tgz

If you’re using your own laptop (64 bit):
wget http://www.hep.lu.se/staff/paganelli/fileshare/gitmnxb01-x64.tgz

Unpack the tutorial app:

32bit: tar zxvf gitmnxb01-ia32.tgz

64bit: tar zxvf gitmnxb01-x64.tgz

Enter the created directory:

32bit: cd Git-it-linux-ia32

64bit: cd Git-it-linux-x64

Start the tutorial app:

./Git-it &

Reminder: the ~ symbol means
 “my home folder”, that is
 /home/courseuser/
the above commands will create (make
directory) and go inside (change
directory)
 /home/courseuser/git/

mailto:L@L
http://www.hep.lu.se/staff/paganelli/fileshare/gitmnxb01-ia32.tgz
http://www.hep.lu.se/staff/paganelli/fileshare/gitmnxb01-x64.tgz

Florido Paganelli MNXB01-2018 - Working with git 24/50Tutorial 4

Have fun with the Git-it tutorial!

Created by jlord, see
https://github.com/jlord/git-it-electron

Contributed by various authors

Written in JavaScript and HTML using a
framework called node.js

Once done the tutorial shows you some
other useful commands and tools.

https://github.com/jlord/git-it-electron

Florido Paganelli MNXB01-2018 - Working with git 25/50Tutorial 4

Best practices in the lab

Since the VM is shared, I suggest that at the beginning of each
lecture, after turning on the VM, you open a terminal and:

Always check the global variables and make sure they refer to your user:
git config –-global --list

Always redefine the git --global user.name and user.username as in the
tutorial with your own name:
git config –-global user.name <yourusername>
git config –-global user.usernamename <yourusername>

Make sure there is a folder ~/git/<yourGITusername> with your
username. For example, I’d do:
mkdir -p ~/git/floridopag (will give you an error if the folder already exists)
cd ~/git/floridopag

Get into your local copy of your fork
cd MNXB01-2018

If the above folder does not exist, clone your git repository (use your username not
mine!):
cd ~/git/floridopag
git clone https://github.com/floridopag/MNXB01-2018.git
cd MNXB01-2018

Print this slide as a reminder of what to do!

https://github.com/

Florido Paganelli MNXB01-2018 - Working with git 26/50Tutorial 4

Setting your default editor with
git

If you commit without the -m option, git will automatically
open a text editor for you to write a commit comment.

It is good practice to:

write a commit title

leave a blank line

describe your commit in more detail.

We will use geany as the default editor, but you can use
any editor you like.

If you don't configure anything, the default is a text editor
called nano, which for some is a bit weird at first. But I
suggest to use it so you just use the command line. Press
“CTRL + O” to save the file, ”CTRL + X” to exit.

Florido Paganelli MNXB01-2018 - Working with git 27/50Tutorial 4

Setting geany as the default git
editor

Run:
 git config core.editor geany

Note that the commit will only happen ONCE
when you save the file in geany.

Test by running

 git commit

If you don't like it, revert to default by
writing

 git config --unset core.editor

Florido Paganelli MNXB01-2018 - Working with git 28/50Tutorial 4

Git log, commit history,
revision numbers

All the commit history with you messages
can be browsed using the command

 git log

> git log
commit 30d4b3805d7de65622cfcd21a122644e33ab76dc
Author: Florido Paganelli <florido.paganelli@hep.lu.se>
Date: Fri Sep 1 17:39:13 2017 +0200

 second change

commit c9af94904c6868ef136d75730fbde63e0a15cf31
Author: Florido Paganelli <florido.paganelli@hep.lu.se>
Date: Fri Sep 1 17:38:11 2017 +0200

 Created readme

30d4b3805d7de65622cfcd21a122644e33ab76dc

Revision number,
an hash

Commit
comments

c9af94904c6868ef136d75730fbde63e0a15cf31

Florido Paganelli MNXB01-2018 - Working with git 29/50Tutorial 4

Git log, commit history,
revision numbers

To see which files have changed for each
commit:

 git log --name-status

Florido Paganelli MNXB01-2018 - Working with git 30/50Tutorial 4

Removing or renaming a file
from the git database

Removing: Sometimes one can decide that files in the directory
should not be part of the repository anymore. Rather than
deleting them with the rm command, one can use

 git rm filename

Remove a file using the above command.

Check the output of git status .

git commit -m 'I have deleted file filename' Remember:
CLEARLY STATE that you removed some files in the commit
message!

Renaming: git mv oldfilename newfilename is equivalent to
 git rm oldfilename
followed by
 git add newfilename

Florido Paganelli MNXB01-2018 - Working with git 31/50Tutorial 4

Graphical Diffing
Run

git diff

> git diff
Index: thisisfloridofile.txt
===
--- thisisfloridofile.txt (revision 6)
+++ thisisfloridofile.txt (working copy)
@@ -1 +1,2 @@
 Hello! this is florido's file.
+I am adding this change.

Line numbers of the two files:
-1 : showing line 1 of of file ---

+1,2 : showing lines 1 to 2 of file +++

If you want a graphical tool to check the diffs, I suggest meld
 sudo apt-get install meld

Use meld as the default diff tool:
 git config diff.tool meld
 git difftool thisisfloridofile.txt

Florido Paganelli MNXB01-2018 - Working with git 32/50Tutorial 4

Undoing
not committed changes

Say that we are not happy with the changes we just made to a single
file and we want to go back to the latest commit (also called HEAD)

Change one of the files in your repository and issue git status.

The best to do is a simple checkout of the file from the last commit
git checkout thisisfloridofile.txt
git diff

Careful! You will lose all the changes done and not committed!!!

Note that this is equivalent to checkout the file at the latest revision
HEAD:
git checkout HEAD thisisfloridofile.txt

Checking out HEAD of all files in a directory will cancel all the changes
done to the uncommitted files in that directory.
git checkout HEAD *

Play a bit with these commands by changing files and see what
happens.

Florido Paganelli MNXB01-2018 - Working with git 33/50Tutorial 4

The main suggestion is:
try to never go back in the revision history.
This is actually nice because in a collaborative environment,
keeps track of who-did-what with no cheating allowed :)
Unfortunately git allows for “cheating” by changing the
revision history. It can be useful sometimes, but must be
used with extreme care. Changing the revision history
gives no UNDO.

To experience with this, change some files and commit.

Florido Paganelli MNXB01-2018 - Working with git 34/50Tutorial 4

all files at a certain revision to the current
working dir.

Usually the output of a revert gives hints
about the steps to take before committing.

Make sure you have at least three commits
(check git log)

Create a fourth commit

Florido Paganelli MNXB01-2018 - Working with git 35/50Tutorial 4

in the log:
git revert commithash

Example:
git revert c9af94904c6868ef136d75730fbde63e0a15cf31

Read the git status output to see what changed

Take action to make the files ready for commit, and
commit

Git will automatically start a commit and open the text
editor for you. It will add the “Revert commithash”
comment to your commit and wait for your input.

Florido Paganelli MNXB01-2018 - Working with git 36/50Tutorial 4

not preserve history and allows you to modify an
existing commit. For a detailed explanation see
https://www.atlassian.com/git/tutorials/undoing-change
s

I suggest to use it only when one of these two happen:

You already staged some changes to a file and you want to
unstage them
 git reset filetounstage

You are totally unhappy with whatever you did so far and
want to unstage all staged files:

git reset

https://www.atlassian.com/git/tutorials/undoing-changes
https://www.atlassian.com/git/tutorials/undoing-changes

Florido Paganelli MNXB01-2018 - Working with git 37/50Tutorial 4

latest commit if, for example, you forgot a
file or you wrote the wrong comment:
 git commit --amend

Note that this will create a new revision hash,
and will DELETE the previous commit hash.
So be sure you are done with amend before
you push to your remote repository.

See https://git-scm.com/book/id/v2/Git-
Basics-Undoing-Things

Florido Paganelli MNXB01-2018 - Working with git 38/50Tutorial 4

Graphical Clients

Want to try a graphical client?

Minimalistic one: in the folder where a git
repository exists, run

gitg &
Check out how it shows branches!

Feature-rich one (not available in repositories):
https://www.gitkraken.com/

This one is NOT available on Lubuntu repositories.
You need to download it from the internet if you want
the latest version.

Upstream, origin, local
A Tale of a River

Florido Paganelli MNXB01-2018 - Working with git 40/50Tutorial 4

Homework Tutorial 4 (HW4)
1)Create a github account (you should already have it after the tutorial)

2) Fork my repository on github:
https://github.com/floridop/MNXB01-2018

3) Clone the repository you forked on your local machine or virtual machine.

4)Using the git remote command, add:

your fork repository as the remote origin

My upstream repository https://github.com/floridop/MNXB01-2018.git as the upstream remote
repository

5)Create a new branch named hw3hw4 and checkout the branch

6)At the root of the repository, create a folder with your name and the first three letters of your last name.
For example my name is Florido Paganelli, I created:

floridopag

7) In the above folder, create a folder called HW3 and upload the HW3 Homework. You can use this space
to save your work in progress, as the VirtualMachine in the lab is not safe.

8) Add the new files and commit. Remember to write an explanatory comment in the commit.
Stupid comments will be rejected.

9) push to the remote origin the hw3hw4 branch and submit me a pull request for that branch on
github.

10) Copy the link of your github fork and a link to your pull request on Live@Lund.

1)An example of github fork link is as follows:
https://github.com/floridop/git-it-electron

2)An example of github merge request link is as follows:
https://github.com/jlord/git-it-electron/pull/204

https://github.com/floridop/MNXB01-2018
mailto:Live@Lund
https://github.com/floridop/git-it-electron
https://github.com/jlord/git-it-electron/pull/204

Florido Paganelli MNXB01-2018 - Working with git 41/50Tutorial 4

Additional material

Florido Paganelli MNXB01-2018 - Working with git 42/50Tutorial 4

Suppose we have two versions of a document with different contents

We want to make one out of two

This is often referred as three-way-merge

We need to choose which part of each document we want to keep

There exist tools to do it, for example the excellent meld

git can attempt to do merges for us:

If the merges are simple, i.e. the changed content of A' can be easily mixed with that of
the content of A''. For example, the documents differ a little but the changes in each
document are not overlapping.

If we provide it with some hint on how to do the merges

If the above fail, it will ask us to do the merge manually, for example using meld

The most frequent case of merge is in case of conflicts, we will not see them in
this course.

Florido Paganelli MNXB01-2018 - Working with git 43/50Tutorial 4

1. Arrows can be used to merge the highlighted content into the pointed file

2. save the result by pressing the save button (saves all modified files!)

Florido Paganelli MNXB01-2018 - Working with git 44/50Tutorial 4

References
git cheat sheets:
https://services.github.com/on-demand/downloads/github-git-cheat-sheet.pdf
https://jan-krueger.net/wordpress/wp-content/uploads/2007/09/git-cheat-sheet.pdf
https://www.atlassian.com/git/tutorials/atlassian-git-cheatsheet

Quick guide to githttp://rogerdudler.github.io/git-guide/

Jlord's git-it:
https://github.com/jlord/git-it-electron

Merging with meld
https://www.youtube.com/watch?v=3Qynj8WUwgs

Reverting
https://www.atlassian.com/git/tutorials/undoing-changes
https://git-scm.com/book/id/v2/Git-Basics-Undoing-Things

Pictures references
https://openclipart.org/

http://www.libreoffice.org/

https://services.github.com/on-demand/downloads/github-git-cheat-sheet.pdf
https://jan-krueger.net/wordpress/wp-content/uploads/2007/09/git-cheat-sheet.pdf
http://rogerdudler.github.io/git-guide/
https://github.com/jlord/git-it-electron
https://www.atlassian.com/git/tutorials/undoing-changes
https://git-scm.com/book/id/v2/Git-Basics-Undoing-Things

Florido Paganelli MNXB01-2018 - Working with git 45/50Tutorial 4

During the tutorial you'll be asked many times to do things
with files. For those of you not familiar with file editing,
here's a small how-to.

There are many ways of creating a file.
One way is by using a text editor

The favorite text editor for this course is called geany. Can
you find the icon in the menu? Open it by clicking on the
icon.

Alternatively, open a terminal and write the
command:
 geany &

(the & symbol sends the command execution in background, see tutorial 1b!)

Creating and editing a file

Florido Paganelli MNXB01-2018 - Working with git 46/50Tutorial 4

Editing and saving a file:
create new

Florido Paganelli MNXB01-2018 - Working with git 47/50Tutorial 4

Editing and saving a file:
write something

Florido Paganelli MNXB01-2018 - Working with git 48/50Tutorial 4

Editing and saving a file:
save or save as

Florido Paganelli MNXB01-2018 - Working with git 49/50Tutorial 4

Editing and saving a file:
choose location and filename

1

2

3

Florido Paganelli MNXB01-2018 - Working with git 50/50Tutorial 4

Editing and saving a file

