
Florido Paganelli MNXB01-2018 Env and Scopes in C++ 1/18Tutorial 7

Environment and scope in C++

Florido Paganelli
Lund University

florido.paganelli@hep.lu.se
Fysikum, Hus A, Room 403

Visiting time: 11:00-12:00 Every day

MNXB01 2018

mailto:florido.paganelli@hep.lu.se

Florido Paganelli MNXB01-2018 Env and Scopes in C++ 2/18Tutorial 7

Outline

Little theory about C++ :

Variable

Environment

Binding

Scope

Geany extensions

Alternatives to Geany

Florido Paganelli MNXB01-2018 Env and Scopes in C++ 3/18Tutorial 7

Variables, types in C++
A variable is an identifier, a name, for a memory location.

To define a variable is to give a name and a type to it. This tells
the compiler to find a free memory space for that variable.

int number;

The type indicates the kind of information stored inside the variable.
In languages like C++ it must be declared explicitly; such languages
are also called typed languages.

The type also defines the size of the allocated memory.

As the compiler reads your code (compilation time), it internally
creates table of names of variables with their types, size, tentative
memory pointers (static allocation).

Var name Var type Associated size Initial tentative
logical memory
location pointer

mynumber int sizeof(int)
e.g. 2bytes

10483392805

Florido Paganelli MNXB01-2018 Env and Scopes in C++ 4/18Tutorial 7

Variables, types in C++
If the variable is not initialized, it can contain anything. It means that at runtime, when
the pointer actually will point to a real memory location, whatever is already there will
represent the variable value.

If we were to run the code immediately without initializing the variable, we're
not sure of what the content of the memory is:

number = 42;

10483...

Initial physical
memory location index

mynumber

By assigning a value to a variable, we tell the
compiler what to write in the memory.

Var name Var type Associated size Initial tentative logical
memory location
pointer

value

mynumber int sizeof(int)
e.g. 2bytes

10483392805 42

10483...

42Initial physical
memory location index

mynumber

010101010100010010101010
Some rubbish previously in memory

Florido Paganelli MNXB01-2018 Env and Scopes in C++ 5/18Tutorial 7

Environment, binding
All the variable and function names “live” in a space called environment. You can
think of it as a table in the compiler containing all variable names and their
associations with memory chunks.

A name is said to be bound to that environment when its value is associated to a
memory index in that environment. In the table on the left we can see some bindings.

When we define a variable, the variable name is added to the environment

In languages like C++ we can see them in the form of pointers.

Binding can be:

Static, that is, decided at compile time

Dynamic, that is, decided at runtime
(yes one can change where in the memory that variable is pointing)

Environment Variable or function
name

Starting
virtual memory index assigned
by compiler (at compile time)

Starting
virtual memory index assigned
by operating system (runtime)

std cout Virt(#200), defined in std physical(#ABBC)

global
global foo() Virt(#1), defined in global physical(#ABCC)
foo() fooScope Virt(#2), defined in foo->virt(#1) physical(#7945)
foo() Anonymous block#1 Virt(#3), defined in foo->virt(#1) physical(#ABCC)

Anonymous block#1 blockScope Virt(#4), defined in Anonymous
block #1->virt(#3)

physical(#ABCC)

Florido Paganelli MNXB01-2018 Env and Scopes in C++ 6/18Tutorial 7

Visibility, scope
A variable is visible in an environment when its binding is
present in that environment, that is:

There exists a variable name in the environment

That variable name is associated to a memory location (this
depends on languages)

Usually a function has its own environment, that is, a set of
variables in its own environment, and can see the variables in
other environments according to some rules.
These rules define the scope, or visibility, of a variable.

In the case of C++, blocks of code (the curly brackets {}) are
used to define new environments and scopes.

A variable defined in a block is always added to that block
environment and visible in that block's environment. For ease of use,
we say is visible in that block.

Q: What happens if one uses the same names in two blocks???

A: The memory to which that name is pointing is overridden by the last block
that could change the environment.
If you don't understand environments and scopes, you will only be able to
verify this at runtime.

Florido Paganelli MNXB01-2018 Env and Scopes in C++ 7/18Tutorial 7

Functions and scopes in C++

In C++, the environment and scopes are managed by the use of
blocks of code.

The general inheritance rules are as follows:

A block inherits the environment from its parent block,
that is, all the variable and function names existing at the
moment of opening the block are imported in the block
environment.

Every variable name defined in a block is added in the
environment of that block.

If a variable with the same name is present in the
environment, the last defined variable overrides any other
variable with the same name within that block.

That is, it is not possible anymore to use the value
contained in variables with the same name defined
outside that block.

Florido Paganelli MNXB01-2018 Env and Scopes in C++ 8/18Tutorial 7

Functions and scopes in C++
#include <iostream>
using namespace std;
int globalScope = 0; //This is a global variable, visible everywhere.

void foo() {
 int fooScope = 1; //Only visible within foo function
 cout << "fooScope: " << fooScope << endl;
 cout << "localScope: " << localScope << endl;
}
int main() {
 cout << "globalScope: " << globalScope << endl;

 { //Any block declares a scope, even this useless one
 int localScope = 3;
 cout << "localScope: " << localScope << endl;
 foo();
 cout << "fooScope: " << fooScope << endl;
 int globalScope = 100; // variable hiding, very bad practice!
 cout << "globalScope: " << globalScope << endl;
 }
 cout << "localScope: " << localScope << endl;
 cout << "globalScope: " << globalScope << endl;
}

Florido Paganelli MNXB01-2018 Env and Scopes in C++ 9/18Tutorial 7

Functions and scopes in C++
Variables in the
global scope

and visible to everyone

#include <iostream>
using namespace std;
int globalScope = 0; //This is a global variable, visible everywhere.

void foo() {
 int fooScope = 1; //Only visible within foo function
 cout << "fooScope: " << fooScope << endl;
 cout << "localScope: " << localScope << endl;
}
int main() {
 cout << "globalScope: " << globalScope << endl;

 { //Any block declares a scope, even this useless one
 int localScope = 3;
 cout << "localScope: " << localScope << endl;
 foo();
 cout << "fooScope: " << fooScope << endl;
 int globalScope = 100; // variable hiding, very bad practice!
 cout << "globalScope: " << globalS cope << endl;
 }
 cout << "localScope: " << localScope << endl;
 cout << "globalScope: " << globalScope << endl;
}

Environm
ent

Variable or
function
name

Parent
environ
ment

Val

global globalScope 0

Florido Paganelli MNXB01-2018 Env and Scopes in C++ 10/18Tutorial 7

Functions and scopes in C++
Variables in the
global scope

and visible to everyone

Variables
visible by foo()

#include <iostream>
using namespace std;
int globalScope = 0; //This is a global variable, visible everywhere.

void foo() {
 int fooScope = 1; //Only visible within foo function
 cout << "fooScope: " << fooScope << endl;
 cout << "localScope: " << localScope << endl;
}
int main() {
 cout << "globalScope: " << globalScope << endl;

 { //Any block declares a scope, even this useless one
 int localScope = 3;
 cout << "localScope: " << localScope << endl;
 foo();
 cout << "fooScope: " << fooScope << endl;
 int globalScope = 100; // variable hiding, very bad practice!
 cout << "globalScope: " << globalS cope << endl;
 }
 cout << "localScope: " << localScope << endl;
 cout << "globalScope: " << globalScope << endl;
}

Environment

Variable or
function
name

Parent
environm
ent

Val

global globalScope 0

global foo()

global main()

foo() fooScope global 1

Florido Paganelli MNXB01-2018 Env and Scopes in C++ 11/18Tutorial 7

Functions and scopes in C++
#include <iostream>
using namespace std;
int globalScope = 0; //This is a global variable, visible everywhere.

void foo() {
 int fooScope = 1; //Only visible within foo function
 cout << "fooScope: " << fooScope << endl;
 cout << "localScope: " << localScope << endl;
}
int main() {
 cout << "globalScope: " << globalScope << endl;

 { //Any block declares a scope, even this useless one
 int localScope = 3;
 cout << "localScope: " << localScope << endl;
 foo();
 cout << "fooScope: " << fooScope << endl;
 int globalScope = 100; // variable hiding, very bad practice!
 cout << "globalScope: " << globalS cope << endl;
 }
 cout << "localScope: " << localScope << endl;
 cout << "globalScope: " << globalScope << endl;
}

Variables in the
global scope

and visible to everyone

Variables
visible by foo()

Undefined variables
not present in any environment
no scope (compile time error!)

Environment

Variable or
function
name

Parent
environm
ent

Val

global globalScope 0

global foo()

global main()

foo() fooScope global 1

Florido Paganelli MNXB01-2018 Env and Scopes in C++ 12/18Tutorial 7

Functions and scopes in C++
#include <iostream>
using namespace std;
int globalScope = 0; //This is a global variable, visible everywhere.

void foo() {
 int fooScope = 1; //Only visible within foo function
 cout << "fooScope: " << fooScope << endl;
 cout << "localScope: " << localScope << endl;
}
int main() {
 cout << "globalScope: " << globalScope << endl;

 { //Any block declares a scope, even this useless one
 int localScope = 3;
 cout << "localScope: " << localScope << endl;
 foo();
 cout << "fooScope: " << fooScope << endl;
 int globalScope = 100; // variable hiding, very bad practice!
 cout << "globalScope: " << globalS cope << endl;
 }
 cout << "localScope: " << localScope << endl;
 cout << "globalScope: " << globalScope << endl;
}

Environment
Variable or
function
name

Parent
environme
nt Val

global globalScope
0

global foo()

global main()

foo() fooScope global 1

main() global

Variables in the
global scope

and visible to everyone

Variables
visible by foo()

Undefined variables
not present in any environment
no scope (compile time error!)

Florido Paganelli MNXB01-2018 Env and Scopes in C++ 13/18Tutorial 7

Functions and scopes in C++
#include <iostream>
using namespace std;
int globalScope = 0; //This is a global variable, visible everywhere.

void foo() {
 int fooScope = 1; //Only visible within foo function
 cout << "fooScope: " << fooScope << endl;
 cout << "localScope: " << localScope << endl;
}
int main() {
 cout << "globalScope: " << globalScope << endl;

 { //Any block declares a scope, even this useless one
 int localScope = 3;
 cout << "localScope: " << localScope << endl;
 foo();
 cout << "fooScope: " << fooScope << endl;
 int globalScope = 100; // variable hiding, very bad practice!
 cout << "globalScope: " << globalScope << endl;
 }
 cout << "localScope: " << localScope << endl;
 cout << "globalScope: " << globalScope << endl;
}

Variables in the
global scope

and visible to everyone

Variables
visible by foo()

Undefined variables
not present in any environment
no scope (compile time error!)

Variables visible in the
useless block

Environment
Variable or
function
name

Parent
environment

global globalScope

global foo()

global main()

foo() fooScope global

main() global

Useless
block

localScope main()

Useless
block

globalScope main()

Florido Paganelli MNXB01-2018 Env and Scopes in C++ 14/18Tutorial 7

Functions and scopes in C++
#include <iostream>
using namespace std;
int globalScope = 0; //This is a global variable, visible everywhere.

void foo() {
 int fooScope = 1; //Only visible within foo function
 cout << "fooScope: " << fooScope << endl;
 cout << "localScope: " << localScope << endl;
}
int main() {
 cout << "globalScope: " << globalScope << endl;

 { //Any block declares a scope, even this useless one
 int localScope = 3;
 cout << "localScope: " << localScope << endl;
 foo();
 cout << "fooScope: " << fooScope << endl;
 int globalScope = 100; // variable hiding, very bad practice!
 cout << "globalScope: " << globalScope << endl;
 }
 cout << "localScope: " << localScope << endl;
 cout << "globalScope: " << globalScope << endl;
}

Environme
nt

Variable or
function
name

Parent
environment Val

global globalScope 0

global foo()

global main()

foo() fooScope global 1
main() global

Useless
block

localScope main()
3

Useless
block

globalScope main()
100

Overridden variable
name!

Hidden variable!

Variables in the
global scope

and visible to everyone

Variables
visible by foo()

Undefined variables
not present in any environment
no scope (compile time error!)

Variables visible in the
useless block

Florido Paganelli MNXB01-2018 Env and Scopes in C++ 15/18Tutorial 7

Functions and scopes in C++ Variables in the
global scope

and visible to everyone

Variables
visible by foo()

Undefined variables
not present in any environment
no scope (compile time error!)

Variables visible in the
useless block

#include <iostream>
using namespace std;
int globalScope = 0; //This is a global variable, visible everywhere.

void foo() {
 int fooScope = 1; //Only visible within foo function
 cout << "fooScope: " << fooScope << endl;
 cout << "localScope: " << localScope << endl;
}
int main() {
 cout << "globalScope: " << globalScope << endl;

 { //Any block declares a scope, even this useless one
 int localScope = 3;
 cout << "localScope: " << localScope << endl;
 foo();
 cout << "fooScope: " << fooScope << endl;
 int globalScope = 100; // variable hiding, very bad practice!
 cout << "globalScope: " << globalScope << endl;
 }
 cout << "localScope: " << localScope << endl;
 cout << "globalScope: " << globalScope << endl;
}

Environme
nt

Variable or
function
name

Parent
environment Val

global globalScope 0
global foo()

global main()

foo() fooScope global 1
main() global

Useless
block

localScope main()
3

Useless
block

globalScope main()
100

Florido Paganelli MNXB01-2018 Env and Scopes in C++ 16/18Tutorial 7

Advanced Geany configuration

These settings will help you while coding in C++.

Find the Tools→Plugins Manager menu in Geany

Activate the following plugins by ticking the boxes:

Auto-close (autocloses parentheses and blocks)

Auto-mark (highlights keywords you’re pointing at)

Code navigation (to switch between header and implementation)

File Browser (you can open files directly from Geany)

GeanyCtags (autocomplete of some C++ common keywords and library)

Split Window (you can divide the screen in multiple windows)

TreeBrowser (Allows you to navigate the filesystem as a tree)

Autocomplete: while writing a function or a library name,
press ALT + SPACEBAR to see possible options

Florido Paganelli MNXB01-2018 Env and Scopes in C++ 17/18Tutorial 7

Alternatives to Geany
Emacs / xemacs

For hardcore developers who like to
memorize a vast number of shortcuts

It does almost everything other IDEs do
except the nice graphics.

Found on most Linux clusters around the
world

available on the official Ubuntu repository,
install with
sudo apt-get install emacs xemacs21

Any text editor you like will do. It’s just text at
the end of the day. But...

Florido Paganelli MNXB01-2018 Env and Scopes in C++ 18/18Tutorial 7

IDEs

Most coders use an Integrated Development Environment, a
text editor with several useful tools. Here is a selection of them.

CodeBlocks
available on the official Ubuntu repository, install with
sudo apt-get install codeblocks

Codelite

available on the official Ubuntu repository, install with
sudo apt-get install codeblocks

Eclipse (DO NOT USE ON LUBUNTUVM!)

Java-based (make it slow on machines with low memory)

Widely used, but not for C++

Can only be downloaded from their website:
http://www.eclipse.org/downloads/packages/release/luna/r/eclipse-ide-cc-developers

Many more, see
https://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments#C/C++

http://www.eclipse.org/downloads/packages/release/luna/r/eclipse-ide-cc-developers
https://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments#C/C

