
 MNXB01-2019 Bash Scripting  1/78Tutorial 3

Other languages and C++
Writing bash scripts

Florido Paganelli
Lund University

florido.paganelli@hep.lu.se
Fysikum, Hus A, Room 403

Visiting time: 11:00-12:00 Every day
other times: send me an email

Alternative: Use Canvas!

MNXB01 2019

mailto:florido.paganelli@hep.lu.se


 MNXB01-2019 Bash Scripting  2/78Tutorial 3

Notation
There's a set of symbols and idioms that are commonly used in command line tutorials and you should 
know about. The description of the grammar of a command is often called synopsis, or brief summary.

Spacing. In general there is always a space between a command an every of its options, that is, every 
word of a command that is shown in these slides. 
However, in some cases it might be tricky to see it, and I will use the symbol    . For example man  bash

command
This graphics above is meant to represent a command. You are supposed to write exactly as it looks.

command <argument> 
The <> (angle brackets) are used to identify a mandatory argument of the command. The command 
will NOT work without the things in the angle bracket.
The above usually means to run the command and to substitute the string <argument> with the 
argument without angle brackets.
Remember, in most languages brackets have a special meaning. The special meaning of the angle 
brackets was shown in the CLI tutorial.

command ARGUMENT
In man pages, sometimes capital letters are used instead of the angle brackets <>. The meaning is 
exactly the same as the angle brackets, the capitalized string means mandatory. We will not use this 
notation in this tutorial because it might be confusing, but you will find it in the linux man pages

command <argument> [<argument>]
The [ ] (square brackets) are used to identify and optional part of the command. The command will 
work if you omit the content of the square brackets []. 
However, if you add a second argument, it must be as defined within the angle brackets <>.

command [<argument1> | <argument2>]
In command descriptions, the | (pipe symbol) is used to identify a mutually exclusive part of the 
command. You can use EITHER <argument1> OR <argument2> but NOT both of them.
This is inherited from formal grammar notations.
In code snippets or pieces of code, the pipe is part of the code and must be copied/written as it is.



 MNXB01-2019 Bash Scripting  3/78Tutorial 3

Outline

Goals

Datasets

Automation using scripting

Genesis of an algorithm

Introduction to scripting

Bash 

Scripts

Variables in bash: environment, binding, scope

Control structures



 MNXB01-2019 Bash Scripting  4/78Tutorial 3

Goals and non-goals of this 
tutorial

Goals:

Being able NOT TO PANIC when somebody gives you something 
you've never seen before (will happen in your entire career)

Being able to search for information depending on a task one 
wants to achieve. (see references at the end of these slides!!!!)

Google is NOT always your friend if you don’t know what you’re searching for.

Being able to identify which language is best for which task
And to compose different languages to achieve a goal

Being able to write a bash script.

Understanding the concepts of Variable, Environment, binding, 
scope.

Non-goal:

Become a script-fu master. It takes long time for the black belt :)

Become a coder. We cannot do this in a lecture, there's plenty of 
dedicated courses out there



 MNXB01-2019 Bash Scripting  5/78Tutorial 3

Handling datasets



 MNXB01-2019 Bash Scripting  6/78Tutorial 3

Typical scientist workflow

Someone (usually your supervisor, today is ME) 
gives you reference to some data and some 
obscure code written by elders who now moved to 
the end of the known universe

Nobody knows what the data looks like and what it 
contains – just that is it about your science!

Nobody has any idea what the code is like and how to 
change it. No documentation, no one left alive to tell you

You have to figure out all the details by yourself

Today I will teach you a few tricks to survive the 
data part



 MNXB01-2019 Bash Scripting  7/78Tutorial 3

Datasets

A dataset is some digital collection, maybe a file or a set of files, 
that contains data we want to use.

A dataset usually has his own format.

A format is a set of rules that define in a rigorous manner how the 
content of the dataset should be read, what are their meanings and the 
relationship among the dataset information

The format can be a well know data format, more or less standardized, 
or some custom data format that one needs to learn

A description of the format is usually provided by the community that 
generated the dataset. It is very rare that a dataset contains 
information about its format.

Very common format names 
CSV (comma separated values)

XML (eXperimental Markup Language)

JSON (JavaScript Object Notation)

Exercise 3.1 : Search for those names and “specification” on Google 
and learn about what they look like.



 MNXB01-2019 Bash Scripting  8/78Tutorial 3

Some dataset examples

Click these links
https://github.com/floridop/MNXB01-2019/blob/master/floridopag/lecture3/lecture3examples/data/nintendowiigames.xml

http://musicbrainz.org/ws/2/artist/5b11f4ce-a62d-471e-81fc-a69a8278c7da?inc=aliases&fmt=json

http://www.smhi.se/pd/klimat/ozone/data//oz2019.vin

Could you guess what is this dataset about?

What is the format?

What is the information contained?

Hints: 
look at the link

Check the top of the file

Look for recurring keywords

Look how the keywords repeat, can you guess there is a structure?
Try to distinguish between data (values) and metadata (description of values/structure)

Look at the numbers/text. Can they be related to something you know, just by 
common sense?

https://github.com/floridop/MNXB01-2019/blob/master/floridopag/lecture3/lecture3examples/data/nintendowiigames.xml
http://musicbrainz.org/ws/2/artist/5b11f4ce-a62d-471e-81fc-a69a8278c7da?inc=aliases&fmt=json
http://www.smhi.se/pd/klimat/ozone/data//oz2019.vin


 MNXB01-2019 Bash Scripting  9/78Tutorial 3

Sample data file: investigation
<?xml version="1.0" encoding="UTF-8" ?>

<Data>
<Game>
<id>1558</id>
<GameTitle>Harvest Moon Animal Parade</GameTitle>
<ReleaseDate>11/10/2010</ReleaseDate>
<Platform>Nintendo Wii</Platform>
</Game>
<Game>
<id>32234</id>
<GameTitle>Busy Scissors</GameTitle>
<ReleaseDate>11/02/2010</ReleaseDate>
<Platform>Nintendo Wii</Platform>
</Game>
<Game>
<id>890</id>
<GameTitle>Rayman Raving Rabbids TV Party</GameTitle>
<ReleaseDate>11/18/2008</ReleaseDate>
<Platform>Nintendo Wii</Platform>
</Game>
<Game>
<id>908</id>
<GameTitle>Super Mario Galaxy 2</GameTitle>
<ReleaseDate>05/23/2010</ReleaseDate>
<Platform>Nintendo Wii</Platform>
</Game>

What can we say by observing this 
data?

• It seems to be structured in some 
way.

• There is some metadata information 
at the top that might hint at some 
known format. Search “XML” on 
google?
 

Can we guess something about the 
structure?

● It seems to have opening and 
closing tags <tag></tag>

● The tags seems to represent a tree 
structure

Can we guess something about the 
content? Anything you may know about?

● Clearly seems to speak about 
games of some kind

● Platform seems to hint to some kind 
of device, there is the name of some 
company in it



 MNXB01-2019 Bash Scripting  10/78Tutorial 3

Datasets can be “dirty”

The data is not always as you expect. Close inspection might 
reveal inconsistencies and corner cases that have to be 
“sanitized” or “validated”, or simply you need a subset of the 
whole dataset.
In any case, something that requires special care.

In most cases you will need to rework the dataset in order to 
process it with your code

In any case, never tamper the original dataset. Do all the 
changes on a separate copy.

Example: take only games whose name starts with B, G or Z.

Devil is in the detail: 

Encodings. To show the content of a file, especially a text file, an 
operating system has to know the encoding of a file. 

look for invisible or non-ASCII characters. These are usually 
symbols for non English-US languages, or control characters



 MNXB01-2019 Bash Scripting  11/78Tutorial 3

Encodings

The encoding is a table that maps bytes contained inside the 
file to a set of graphical representations. Some files carry this 
information at the beginning of the file, but for most text files 
this needs to be guessed using a magic number.
Most editors can guess automatically and allow you to force-
save in some encoding. In linux you can check the encoding 
of a file with the file command.
file <filename>

Most common encoding sets for text files are:

ASCII (US-english, Latin)

UTF-8 (US-english and Latin with extended chars like öäå)

UTF-16 (Symbol languages (Asian, Arabic, Hindi…))

On the geany editor, you can read the encoding at the bottom 
of the window.



 MNXB01-2019 Bash Scripting  12/78Tutorial 3

Control Characters

They’re always there especially in text files. Common examples are newlines:

(Most linux-unix) Line Feed (LF): Makes a text file go to the next line. Usually 
represented as \n

(Mac OS) Carriage Return (CR): makes a text file go to the beginning of a line. Usually 
represented as \r

(Windows) (CR LF): makes a text file go to the beginning of the line and then to a new 
line. Usually represented in programming languages as \r\n

More info on https://en.wikipedia.org/wiki/Newline

You can see them with less -u <filename> or with geany through the menu 
View→”Show line endings”

The symbols \ is used to represent “escape sequences”, used for special 
control characters. Some other common ones:

\t : tab, a fixed size set of spaces

\s : a space

On geany, enable with View→”Show white space”

https://en.wikipedia.org/wiki/Newline


 MNXB01-2019 Bash Scripting  13/78Tutorial 3

Cleaning up a dataset

In the case of text-file datasets, usually the best is to use tools 
that were created to handle text – or the so-called string datatype

C and C++ are notoriously very bad with strings

The cleanup is easier if done with some other language like 
python, perl or some of the bash commands

In what follows we will learn how to automate a workflow where 
the data needs to be cleaned up first

I am teaching bash, but there’s nothing preventing you from using 
any other tools you fancy such as python or Microsoft Excel or 
Google Spreadsheet. The use if bash is just practical if you have 
hundreds of text files to parse, and all the tools are for free.

You can run an ubuntu/linux-like shell also on windows (e.g. cygwin) 
without virtualization. The use of these tools will become more and more 
common.



 MNXB01-2019 Bash Scripting  14/78Tutorial 3

Typical scientist workflow
summary

1. Indentify datasets formats

2. Cleanup data using tools like
 bash commands, python, perl...

3. Write code to process data 
in languages like C, C++

4.Write scripts in Bash, Python, perl 
To automate steps 2 and 3 on multiple datasets



 MNXB01-2019 Bash Scripting  15/78Tutorial 3

Workflows with various tools

In the free software/open source community everyone shares 
knowledge about coding.

This usually means that someone’s work is based on someone else’s

This generated a style of creating software that is a mix of different 
programming languages, tools, practices:
composing different applications to achieve a goal

It is very common that your C++ code will require some 
preparation before the build for which leads to 
tedious repetitive commands to type in

“tedious repetitive” is what a computer is good at. 
Let it do it on your behalf. 
A human has better things to do in life than monkey-coding!

Scripting languages are very good to automate boring work.



 MNXB01-2019 Bash Scripting  16/78Tutorial 3

Automation and 
composition of languages

Cornerstone of open source programming: 
if something exist that does a task, and it does it 
good, use it and do not rewrite code

Automation of repetitive tasks

Make use of interoperability within languages

Technique: identify subproblems and separate 
tasks, increasing “debuggability”

Choose the right command/language for each 
subtask



 MNXB01-2019 Bash Scripting  17/78Tutorial 3

Genesis of an algorithm:
a top down approach

Write a list of each main task translating  the 
description of the problem.

Open your favorite text editor and start 
writing down as comments the steps to the 
algorithm. You can even write that on paper 
first.

An example of this process is this pseudocode 
in git taken from last year’s homework:

https://github.com/floridop/MNXB01-2018/blob/master/floridopag/HW
3/fortuneteller.sh.pseudocode#L134

https://github.com/floridop/MNXB01-2018/blob/master/floridopag/HW3/fortuneteller.sh.pseudocode#L134
https://github.com/floridop/MNXB01-2018/blob/master/floridopag/HW3/fortuneteller.sh.pseudocode#L134


 MNXB01-2019 Bash Scripting  18/78Tutorial 3

Homework 3
The goal of the homework is to familiarize with dataset 
cleanup using bash as a tool to automate such cleanup.

The homework will be published on Canvas, the 
instructions to carry it on will be on this year’s github 
repository:

https://github.com/floridop/MNXB01-2019/blob/master/
floridopag/tutorial3/homework3/README.md

Hint: Check the solutions of previous year assignments 
on github or the course webpage:

http://www.hep.lu.se/courses/MNXB01/index-2018.html

https://github.com/floridop/MNXB01-2018/tree/master/floridopag/HW3

http://www.hep.lu.se/courses/MNXB01/index-2017.html

https://github.com/floridop/MNXB01-2017/tree/master/flopaganelli/HW3b

http://www.hep.lu.se/courses/MNXB01/index-2016.html

http://www.hep.lu.se/courses/MNXB01/index-2015.html

http://www.hep.lu.se/courses/MNXB01/index-2018.html
https://github.com/floridop/MNXB01-2018/tree/master/floridopag/HW3
http://www.hep.lu.se/courses/MNXB01/index-2017.html
https://github.com/floridop/MNXB01-2017/tree/master/flopaganelli/HW3b
http://www.hep.lu.se/courses/MNXB01/index-2016.html
http://www.hep.lu.se/courses/MNXB01/index-2015.html


 MNXB01-2019 Bash Scripting  19/78Tutorial 3

Introduction to BASH



 MNXB01-2019 Bash Scripting  20/78Tutorial 3

Scripting vs coding

The word script is taken from a theatrical 
play script: a description of the 
environment on stage, a sequence of 
lines and gestures to do

There is no practical difference between 
writing code in a compiled language and 
a scripted one.

The main difference is that scripted 
languages do not require compilation.



 MNXB01-2019 Bash Scripting  21/78Tutorial 3

BASH

Bash stands for Bourne-Again SHell. It’s a 
rewrite by the GNU member Brian Fox of 
one of the unix sh shells, called Bourne 
shell by its author surname (Stephen 
Bourne).

Yesterday you learned a few commands in 
bash, today we will write programs with 
them.



 MNXB01-2019 Bash Scripting  22/78Tutorial 3

A bash script and its components

#!/bin/bash

# 1. use the cat command to print the file /proc/cpuinfo
# 2. extract the first two lines of the above output with head 
# 3. store the output of head in the CPUINFO variable
# it is all done in the following one line!
CPUINFO=$(cat /proc/cpuinfo | head -2)

# write the content of CPUINFO to screen
echo "$CPUINFO"

 Bash is not really a programming language. It is more like a command scripting 
language for automation of tasks, with some programming language features. 

 Instead of libraries you will mainly use the GNU/Linux userland and GNU/Linux 
coreutils software, a set of commands that help automate common tasks, or other bash 
scripts.

 A bash script is nothing more that a sequence of commands written in a file.

 The bash interpreter will process those in sequence, from the top line to the bottom

 Like C++, is possible to define variables and control structures in the scripting 
language.

 However, the bash script language has little to share with the complexity of C++. All that it 
can do is to execute commands, test conditions, and store things in variables.

 Most commands we will see today are documented on man. You can type man bash to read 
the full documentation.

  Consider the following code, a script called getcpuinfo.sh:



 MNXB01-2019 Bash Scripting  23/78Tutorial 3

Anatomy of a bash script

#!/bin/bash

# put the output of cat in the variable CPUINFO

CPUINFO=  $(  cat /proc/cpuinfo | head -2   )

# write the content of CPUINFO to screen

echo "$CPUINFO"

The first line has a special syntax: #! tells bash which 
interpreter to use. It might be another shell!

Every other line starting with a 
hash # is a comment. The 
interpreter ignores everything 
that follows until the end of 
line. Useful to describe code to 
human readers.

A variable definition is any string followed by a = symbol. It is a 
convention to use capital letters. 
Remember that case matters, cpuinfo is different from CPUINFO!

This tells bash to execute a 
command and return its output.

A variable call is any variable name prefixed by the $ symbol. 
Case does matter here. The quotes affect the output, that in this 
case depends on how the echo command works.
The $ symbol stands for “give me the value contained in that 
variable”



 MNXB01-2019 Bash Scripting  24/78Tutorial 3

Executing a script
The script can be made executable as if it was a command. 

If you forgot to make the file executable, you will get the following error:
bash: ./getcpuinfo.sh: Permission denied

To run or execute a file in the current directory, prefix it with ./

pflorido@tjatte:~> ./getcpuinfo.sh 
processor : 0
vendor_id : GenuineIntel
cpu family : 6
model : 15
model name : Intel(R) Core(TM)2 CPU          6400  @ 2.13GHz
stepping : 6
cpu MHz : 2127.650

pflorido@tjatte:~> chmod +x getcpuinfo.sh 



 MNXB01-2019 Bash Scripting  25/78Tutorial 3

Variables: definition, initialization
A variable is an identifier, a name, for a memory location. 

To  define a variable means to tell the interpreter to find a free memory space for that 
variable. This memory space has an index. 

In bash, you define a variable by simply writing a string with CAPITAL LETTERS (by 
convention) that starts with a letter on the left side of the symbol =
Note: BASH doesn’t like spaces that much!
ANSWER=

If a bash variable is not initialized, the memory space at that index contains the 
blank/empty string

ANSWER= #AB104

ANSWER=”42”

Initial Memory location 
index

To initialize a variable is to assign a value to it.
It means putting such value inside the memory location identified by that 
variable name.

In bash this is done by writing a value on the right side of the equal sign =

#AB104 42

ANSWER=”FortyTwo” #AB104 FortyTwo



 MNXB01-2019 Bash Scripting  26/78Tutorial 3

Variable types in bash
In BASH, variables have no explicitly defined type, because 
actually there is only one type. 

It is implicitly assumed that the content is a
string: a sequence of characters.
The maximum size depends on the system.

Memory Allocation is always done dynamically depending 
on the assigned value

Consequence: Doing arithmetic with bash is a bad idea. 
Bash does not understand numbers so well...

Var name Var type Associated  size Initial tentative logical 
memory location 
pointer

value

ANSWER Always string Depends on system 
configuration

#AB104 42 as a string

ANSWER Always string Depends on system 
configuration

#AB104 FortyTwo



 MNXB01-2019 Bash Scripting  27/78Tutorial 3

Variables: retrieving values

So far we’ve seen how to assign a value 
to a variable. But how to read or retrieve 
such value from the computer’s memory?

In bash one simply prefixes the variable 
with the $ (dollar) sign.

$ANSWER returns the value of the ANSWER 
variable.



 MNXB01-2019 Bash Scripting  28/78Tutorial 3

Calling variables values in 
different ways

$VAR returns the value contained in the 
variable called VAR.

${VAR} returns the value contained in the 
variable called VAR but it makes easier to spot 
the boundaries of the variable name. It can be 
used to concatenate string values and strings, 
like in the previous code:
      ${TARGETDIR}/*;
it shows clearly that the name of the variable is 
TARGETDIR



 MNXB01-2019 Bash Scripting  29/78Tutorial 3

Using the suggested file editor
geany



 MNXB01-2019 Bash Scripting  30/78Tutorial 3

During the tutorial you'll be asked many times to do things 
with files. For those of you not familiar with file editing, 
here's a small how-to.

There are many ways of creating a file. 
One way is by using a text editor

The favorite text editor for this course is called geany. Can 
you find the icon in the menu? Open it by clicking on the 
icon.

Alternatively, open a terminal                and write the 
command: 
                   geany &

(the & symbol sends the command execution in background, see tutorial 2!)

Tip: you can switch between windows using the combination Alt + TAB ()

Creating and editing a file



 MNXB01-2019 Bash Scripting  31/78Tutorial 3

Editing and saving a file:
create new



 MNXB01-2019 Bash Scripting  32/78Tutorial 3

Editing and saving a file:
write something



 MNXB01-2019 Bash Scripting  33/78Tutorial 3

Editing and saving a file:
save or save as



 MNXB01-2019 Bash Scripting  34/78Tutorial 3

Editing and saving a file:
choose location and filename

1

2

3



 MNXB01-2019 Bash Scripting  35/78Tutorial 3

Editing and saving a file



 MNXB01-2019 Bash Scripting  36/78Tutorial 3

Encodings

One can see the encoding of a file at the bottom of 
geany’s window:

And can eventually 
set/change the 
file encoding 
if required: 



 MNXB01-2019 Bash Scripting  37/78Tutorial 3

Control/invisible characters
Enable view of control characters:

Line endings
(Line Feed for Linux/Unix)

White spaces
 as dots



 MNXB01-2019 Bash Scripting  38/78Tutorial 3

Bash Tutorial part 1

Create a script

Execute a script

Variables

Print out

Command substitution and pipes



 MNXB01-2019 Bash Scripting  39/78Tutorial 3

Exercises
 Read slides 21-28 if you get lost on one these exercises. 

 Exercise 3.2 (write a bash script): Open geany, write and save the following 
code as file answers.sh

#!/bin/bash

# define and initialize the ANSWER variable
ANSWER=42

# write the content of ANSWER to screen
echo "$ANSWER"

 Exercise 3.3 (execute a bash script): make the script 
answers.sh executable and execute it as described in slide 24.

 Exercise 3.4 (echo): Familiarize with the echo command. It is 
used to print out information to the screen.
Edit answers.sh so that at the end of the program it prints out 
“The content of the variable answer is 42”

 Exercise 3.5 (modify scripts): Modify the content of answer 
with 42+42, save and execute again. What happens? Can you 
make the code print out the content of the ANSWER variable?



 MNXB01-2019 Bash Scripting  40/78Tutorial 3

Predefined variables in scripts
Prefixed by the $ symbol, they are instantiated automatically in bash at the start of 
the script. 

Various: 

$PATH: list of paths where executable commands are

$PS1: prompt format

$SHELLOPTS: options with which the shell is run

$UID: User ID of the user running the script

Process info and status codes: 

$$: process identifier (PID) of the script itself. 
The PID is an integer number that the operating systems assigns to a binary file once it is ran, 
that is, when it becomes a process. It uniquely identifies a running program until the 
machine is shut down. See Lecture 3 slide 76 and Balasz slides for Tutorial 2

$?: exit code of the last executed command (0 if it ended without errors, any other number 
otherwise). More about it later in the tutorial.

$!: PID of last command executed in background

Script parameters/arguments: $#, $0, $1, $2….

$# is the number of arguments passed to the script

$0 is the name of the script itself as called to be executed

$1..n is each string that follows the name of the script.



 MNXB01-2019 Bash Scripting  41/78Tutorial 3

Exercises
Exercise 3.7:
What is the predefined PATH variable?

During the course we ran commands that did not need a ./ in 
front. The reason is: the directory where our code is placed is 
not known by the system as a place where executables are. 

This list is contained in the predefined variable PATH.

Add the following line at the end of the answers.sh:

Save and execute the script again: this line above will 
show the folder path where the the system looks for 
executables.

echo “PATH value is $PATH”



 MNXB01-2019 Bash Scripting  42/78Tutorial 3

Exercises

#!/bin/bash -x

Exercise 3.8 (enable/disable debugging mode): 

Enable Debugging to debug the script, that is, see what is doing 
while running, modify the first line of answers.sh as below:

Save the file and execute it again. See the differences in the output.

You may delete ‘-x’ after you’re done, and just add it when you do 
not understand what the code is doing.

> ./answers.sh

+ ANSWER=42

+ echo 42

42

+ echo “PATH value is /nfs/users/floridop/bin:/usr/l

“PATH value is /nfs/users/floridop/bin:/usr/local/sb

● The lines starting 
with + show what 
line the interpreter 
is processing

● the lines without + 
are the output 
result of the 
process.

Processing variable: store 42 inside ANSWER

processing echo command

Result of echo command execution: print 42 on screen



 MNXB01-2019 Bash Scripting  43/78Tutorial 3

Using parameters and quotes
 Exercise 3.9: Let’s modify the answers.sh script to take in input the 

number it has to print. Using the predefined variable $1 in slide 40:
#!/bin/bash

# set the variable to the first input parameter
# to the answers.sh script
ANSWER=$1

# write the content of ANSWER to screen
echo "You asked me to write: $ANSWER"

 Exercise 3.10: execute answers.sh passing a value of your choice, for example:
./answers.sh FortyTwo

 Exercise 3.11: Pass the string (42). What happens?

 Certain characters are special in Bash (see Tutorial 2). If you want to pass them as string, you 
must enclose them in quotes ‘ or double quotes “.
Try again with the following: 
 “(42)”

 ‘(42)’

 “$PATH”

 ‘$PATH’

 The meaning of the quotes is different: 

 The single quote ‘ is verbatim, that is, what is inside the quotes is taken exactly as it is.

 The double quote “ allows to resolve/fetch the value of variables, as in echo



 MNXB01-2019 Bash Scripting  44/78Tutorial 3

Tutorial continued: download
the bash examples from git
Open a terminal.

Change Directory into your home.
cd ~

Create a directory for GIT. We will see it later in the course, just execute the commands below.
mkdir git
cd git

Use GIT (we will see it later in the course) to download the examples for this tutorial.
This will create a directory called MNXB01-2019.
git clone https://github.com/floridop/MNXB01-2019.git  MNXB01-2019
cd MNXB01-2019

Create a directory for your own activity and change directory to it.
The directory name should be your name and the first three letters of your last name.
For example, my name is Florido Paganelli and I will use floridopag but you must use yours.

mkdir namesur

cd namesur

Copy the content of my tutorial folder inside your newly created folder
cp -r ~/git/MNXB01-2019/floridopag/tutorial3 .

Enter the tutorial folder you just copied, there is a folder called bash:
cd tutorial3/examples/bash

List the folder contents to see the scripts with 
ls -l



 MNXB01-2019 Bash Scripting  45/78Tutorial 3

Predefined variables example

#!/bin/bash

# predefinedvars.sh
# call with: ./predefinedvars.sh arg1 arg2 arg3
#

# print out info about arguments to this script
echo “Number of arguments: $#”
echo “Name of this script: $0”
echo “Arguments: $1 $2 $3 $4”

# print this script's Process IDentifier:
echo “PID is $$”

Let’s consider the predefined variables in slide 18.

Exercise 3.12: Run the script. Remember to chmod +x predefinedvars.sh 
to make it executable!

Exercise 3.13: modify the script so to check the output of some other predefined 
variable, in particular $* and $@ 
Ask me if you don’t understand what is going on!



 MNXB01-2019 Bash Scripting  46/78Tutorial 3

BASH power: Command substitution
and pipe

 Consider the getcpuinfo.sh script. 
#!/bin/bash

# put the output of cat in the variable CPUINFO
# take only the first 2 lines using head
CPUINFO=$(cat /proc/cpuinfo | head -2)

# write the content of CPUINFO to screen
echo "$CPUINFO"

 Notice the use of the $( … ) construct. It is used to   
capture the output of the commands between parentheses.

 Notice the use of the | (pipe) symbol. It sends the output 
of the cat command as an input  to the head command

 Exercise 3.15: execute getcpuinfo.sh as described in 
slide 18.

 Exercise 3.16: Familiarize with the head command. It 
selects a certain number of lines from the beginning of a file. 
Make it select 10 lines instead of just 2.



 MNXB01-2019 Bash Scripting  47/78Tutorial 3

Bash Tutorial part 2

Functions

Environment, Binding and Scope

Customizing your environment

Conditions

Control structures

The exit status

Useful commands



 MNXB01-2019 Bash Scripting  48/78Tutorial 3

Functions
Sometimes we need to do the same task a certain number of 
times, and it’s a bit boring to copy paste. Consider the following 
example getsomelines.sh where we want different lines from 
different files:

#!/bin/bash

# put the first two lines of /proc/cpuinfo in CPUINFO
CPUINFO=$(cat /proc/cpuinfo | head -2)
# write the content of CPUINFO to screen
echo "First 2 lines of /proc/cpuinfo:"
echo "$CPUINFO"

# put the first four lines of /proc/meminfo in MEMINFO
MEMINFO=$(cat /proc/meminfo | head -4)
# write the content of MEMINFO to screen
echo "First 4 lines of /proc/meminfo:"
echo "$MEMINFO"

# put the first line of /etc/hostname in HOST
HOST=$(cat /etc/hostname | head -1)
# write the content of MEMINFO to screen
echo "First 1 line of /etc/hostname:"
echo "$HOST"



 MNXB01-2019 Bash Scripting  49/78Tutorial 3

Functions – identifying parameters
When you have code like this, it’s good to identify 
similarities that could be parameters to a function:
can we simplify the code?

#!/bin/bash

# put the first two lines of /proc/cpuinfo in CPUINFO
CPUINFO=$(cat /proc/cpuinfo | head -2)
# write the content of CPUINFO to screen
echo "First 2 lines of /proc/cpuinfo:"
echo "$CPUINFO"

# put the first four lines of /proc/meminfo in MEMINFO
MEMINFO=$(cat /proc/meminfo | head -4)
# write the content of MEMINFO to screen
echo "First 4 lines of /proc/meminfo:"
echo "$MEMINFO"

# put the first line of /etc/hostname in HOST
HOST=$(cat /etc/hostname | head -1)
# write the content of MEMINFO to screen
echo "First 1 line of /etc/hostname:"
echo "$HOST"



 MNXB01-2019 Bash Scripting  50/78Tutorial 3

Functions - definitions
One can define functions to reduce complexity and increase readability

A bash function has:

A name, so that is possible to reuse the function, usually followed by two parentheses (); 
example: myfunction()

A definition, where the operations that the functions will do are defined. It is also called the 
body of the function.

The body of the function MUST be enclose in curly brackets {}. These delimit a block of code 

The body of the function is executed ONLY when the function is called, not when it is 
defined.
Example: { echo “this is the body of the function” }

Parameters, that are handled the same as command line arguments with the predefined 
variables $#, $0,...$n. $0 is the name of the function!
Example: { echo “the first parameter is $1” }

Several calls. A call is when the name of the function appears with parameters to the 
function. 

The call will trigger an instantiation of the parameters inside the body of the function, 
that is, the values of the $1, $2 variables will be substituted with the parameters.

the function body will be executed with the values of the passed parameters.
Example: myfunction param1
myfunction param2 param3
myfunction param...



 MNXB01-2019 Bash Scripting  51/78Tutorial 3

Functions – example refactored
Please take your time to look at the refactored code for 
getsomelines.sh, getsomelines_function.sh:

#!/bin/bash

# Function DEFINITION:
# Function that takes in input a filename and a number of lines
# outputs a message about the printed lines
# function NAME
printlinesoffile()
{ # start function BODY
  # the first parameter is a filename
  FILENAME=$1
  # the second parameter is a number of lines
  NUMLINES=$2

  # RESULT is a variable with side effect: the result is stored
  # in a global variable
  # be CAREFUL when to extract the value outside the function!
  # It changes at every function call!
  RESULT=$(cat $FILENAME | head -$NUMLINES)

  # Print out the lines
  echo "First $NUMLINES line(s) of $FILENAME:"
  echo "$RESULT"

} # end of function BODY

# function CALL: put the first two lines of /proc/cpuinfo in CPUINFO
printlinesoffile /proc/cpuinfo 2
CPUINFO=$RESULT

# function CALL: put the first four lines of /proc/meminfo in MEMINFO
printlinesoffile /proc/meminfo 4
MEMINFO=$RESULT

# function CALL: put the first line of /etc/hostname in HOST
printlinesoffile /etc/hostname 1 
HOST=$RESULT



 MNXB01-2019 Bash Scripting  52/78Tutorial 3

Side effects

Mathematical functions only return values.

A programming language function or procedure 
not only returns a value, but usually changes 
the environment of the process running. This 
is usually called a side effect.

The content of $RESULT is a side effect of the 
printlinesoffile() function as it changes the 
environment of the process at every function 
call



 MNXB01-2019 Bash Scripting  53/78Tutorial 3

Environment, binding
Environment: All the variable and function names “live” in a space called environment. You can 
think of it as a table in the compiler or interpreter memory containing all variable names and their 
associations with memory chunks.

Binding: A name is said to be bound to that environment when its value is associated to a memory 
index in that environment. In the table below we can see some bindings.

Binding can be:

Static, that is, decided at compile time

Dynamic, that is, decided at runtime 
(yes one can change where in the memory that variable is pointing)

When we define a variable or a function, the variable/function name is added to the environment

Environment Variable 
name

Value

global PWD Current dir

global SHELL Current shell

global PATH Executable paths

cpuinfo.sh CPUINFO First 2 lines of /proc/cpuinfo

getsomelines_function.sh RESULT 18458

getsomelines_function.sh printlinesoffile() 3515



 MNXB01-2019 Bash Scripting  54/78Tutorial 3

Visibility, scope
A variable is visible in an environment when its binding is 
present in that environment, that is:

There exists a variable name in the environment

That variable name is associated to a memory location (this depends 
on languages)

Usually a function has its own environment, that is, a set of 
variables in its own environment, and can see the variables in 
other environments according to some rules. These rules define 
the scope, or visibility, of a variable.

In the case of BASH, functions do not have own environment. 

The scope or visibility of a variable in bash is limited to a bash 
instance and all its children. Let's see some examples.

In BASH there are two kinds of environment:

The set environment, which only belongs to a running process;

The export environment, which is a subset of the set environment which 
is exposed to child processes, or processes run inside the same bash.



 MNXB01-2019 Bash Scripting  55/78Tutorial 3

The BASH environment: export

Everytime one opens a terminal, the program 
bash is executed and a new environment is 
created.

1. Open a terminal LXTerm.

2a. Run the set command. You’ll see all the 
variables in the current bash session.

    Everytime a variable is initialized it ends 
    up in the set environment.

2b. Run the export command. You'll see all the 
environment variables in the current bash 
session that will be exported to any child 
process.

3. Create and initialize a new exported 
environment variable:

  export MYENV1=”This is a global env var”

4. Search for the variable after running export, or just 
print its content with 
    echo $MYENV1

New terminal environment
all global variables

Terminal environment after 
export MYENV1=”This is a global env var”

Global 
Predefined 
Vars

export MYENV1=”This is a global env var”

Exported
vars

Global 
Predefined 
Vars Exported

vars

MYENV



 MNXB01-2019 Bash Scripting  56/78Tutorial 3

The BASH environment: export

5. Now open another bash 
instance:

Write the command bash and press enter.
You are now in a new bash command line.

Run the command export. You will find that 
MYENV1 is still there.

The environment is said to be inherited 
from the father process.

This happens every time you start a 
bash script => Starting a bash script is 
equivalent to executing the command bash 
and then a sequence of commands.

6. Open another terminal LXTerm and run 
export
echo $MYENV1

MYENV1 should not be there.
There is no environment inheritance 
between terminal windows.

Switch back to the terminal where MYENV1 is 
defined.

New terminal environment
all global variables

Terminal environment after 
export MYENV1=”This is a global env var”

Terminal environment after 
running bash

Inherits all the parent vars

New LXTerm terminal environment
≠

Execute “bash”

Global 
Predefined 
Vars

Exported
vars

Global 
Predefined 
Vars

Exported
varsMYENV

Terminal environment after 
export MYENV1=”This is a global env var”

Global 
Predefined 
Vars

Exported
varsMYENV

Global 
Predefined 
Vars

Exported
vars



 MNXB01-2019 Bash Scripting  57/78Tutorial 3

BASH environment: scope
Exercise 3.17: Consider the bash script envtest.sh in 
the tutorial folder  with the following content:

#!/bin/bash

# test if an environment variable is defined
if [ "x$MYENV1" == "x" ]; then
        echo "MYENV1 not defined in the environment or empty. Please run"
        echo 'export MYENV1="This is my first environment variable"'

        # I had to comment/remove the next line otherwise sourcing this 
        # script will close your terminal if MYENV1 is not defined!
        # Uncomment to try ;)   
        #exit 1;
fi

# create an environment variable
MYENV2="This is my second environment variable"

# write the content of the environment vars to screen
echo "Content of MYENV1: $MYENV1"
echo "Content of MYENV2: $MYENV2"

echo "Now check if MYENV2 still exists, with the command"
echo 'echo $MYENV2'



 MNXB01-2019 Bash Scripting  58/78Tutorial 3

BASH environment: scope
Run it: ./envtest.sh

Try to run the commands:
      echo “Content of MYENV2: $MYENV2"
      echo “Content of MYENV3: $MYENV3"

When you ran a script, a new bash instance is generated for the script, that inherits the 
father environment

Once the script finishes, all variables defined or exported inside the script are cleared 
from the environment table and the control goes back to the father process.
The “father” environment (where you ran the bash command) DOES NOT inherit from 
“children” (executed script), but bash scripts executed inside it have their own 
environment that inherits from the father. 

bash

new bash where
envtest.sh
is executed
MYENV2 exists only here 
and in all subchildren

exp1

env2

father

Any script/command
 called inside envtest.sh exp12. child bash. Only 

inherits exp1, exp2, not set2

MYENV1

env1
MYENV1 MYENV2

set2exp1
MYENV1 MYENV2

MYENV1
set3

4. After the completion of 
envtest.sh the control goes
 back to the father process 
and all vars defined in the 

children are lost
1. Child bash

inherits variables
3. subscript finishes, control goes 
back to envtest.sh, set3 is deleted

exp2
MYENV3

exp2
MYENV3



 MNXB01-2019 Bash Scripting  59/78Tutorial 3

Importing an environment

In bash, there is a command that allows you to copy the environment 
defined in a script to another script or bash instance, so that it survives 
the termination of a script. This command is source

Careful! The command also executes EVERYTHING inside 
the BASH script!

If you now try

source ./envtest.sh
echo “Content of MYENV2: $MYENV2"
echo “Content of MYENV3: $MYENV3"
You'll see that the output of export will contain also MYENV3. 
but not MYENV2, which is only in the set or local environment

If you now write bash and run the export command again you will not 
see MYENV2 anymore, it is lost in the parent process. 
Only the exported environment survives – which is why in bash the 
exported environment is usually the only one called the environment.



 MNXB01-2019 Bash Scripting  60/78Tutorial 3

Environment summary

Every new terminal window LXTerminal creates a new 
environment. Environments are not shared within terminal 
windows.

An initialized variable only “exists” in the environment of the bash 
instance where it was initialized.

To make sure a variable survives in all script launched inside a 
bash instance, one must export it

Exported variables are only inherited by child processes and not by 
parent processes.

One can import the environment that a script generates by using 
the source command

Remember: do not write any exit in code you plan to source!

The variables in the export environment are commonly called 
environment variables.



 MNXB01-2019 Bash Scripting  61/78Tutorial 3

Customizing your environment

When opening a terminal or starting bash, there are a few key files that are processes 
to initialize your shell environment.

Depending on the distribution and the shell, these may vary. Some are system files 
and you cannot change them, these are processed first when opening a shell. But you 
can override them inside your user files, that are processed after the system ones.

System files:
/etc/profile

All files in /etc/profile.d/
/etc/bash.bashrc

User files. These are hidden, hence their names starts with a dot.
You can see them with ls -a ~

~/.profile

~/.bashrc

~/.bash_profile

You can inspect the content of those files using cat, less or gedit. Ask me about 
things you do not understand.

IMPORTANT: .bashrc should NEVER contain code that generates output 
when .bashrc is executed.



 MNXB01-2019 Bash Scripting  62/78Tutorial 3

Customizing your environment
exercise

We will add an alias – kind of a macro or shortcut - to the cd 
command, cdMNXB01,  that allows us to quickly access the git folder.

The alias command is used for that. Try it and you will see the list 
of active aliases.

Exercise 3.18 – add cdMNXB01 alias

1. backup your existing .bashrc file:
cp ~/.bashrc ~/bashrc_20190913backup

2. Open .bashrc with geany
geany ~/.bashrc &

3. Add at the end of the file the command:
alias cdMNXB01=’cd ~/git/MNXB01-2019’

4. Import the newly created alias by sourcing the new bashrc:
source ~/.bashrc

5. It should now appear in the list if you write alias

6. Test that you can use the newly added cdMNXB01 command! It will move 
you directly to the git folder with the exercises.



 MNXB01-2019 Bash Scripting  63/78Tutorial 3

Conditions
Conditions are of different kinds depending on the languages. 
The only condition that BASH can check is whether a command execution 
terminates successfully.

An exit value of 0 is TRUE (termination successful),
all other values are FALSE (termination unsuccessful).

The way to specify conditions is as follow:

The square bracket [ ] or the test command can be used. 
Documentation: man test

Example: test -e <filename> checks if a file exists; if the file exists, the predefined variable $? will contain 0, 
otherwise 1. 

Try echo $? after running a test to see the exit value of the test command.

The double square bracket or extended test
[[ <some test command> ]]
Documentation: execute man bash 
and search for “conditional expression”

Example: [[ -e /etc/services ]]

The double parentheses for arithmetical expansion and logical operations.
<a> and <b> should be integers.
 (( <a> && <b> )) 
Documentation: execute  man bash 
and search for  “Arithmetic Expansion”

Tips: 

- to search while in man, type the / character followed by a search string and then press 
Enter.
- To exit man, use the key q
- To move around use the arrows.



 MNXB01-2019 Bash Scripting  64/78Tutorial 3

Conditions: Exercises
Exercise 3.19: Execute the following commands: 

The /etc file exists, so test should exit with no errors
test -e /etc

Hence the following should be 0
echo $? 

This file for sure does not exist! It should put an error in the exit 
status
test -e /thisfiledoesnotexist

What is the exit status now? Should be 1, means error, the file did not 
exist
echo $?

The brackets are equivalent to the above. Try!
[ -e /etc ]
echo $? 
[ -e /thisfiledoesnotexist ]
echo $?

The double brackets are also equivalent for this case, but they can do also logic and 
arithmetic evaluation if required, which the others above don’t.
[[ -e /etc ]]
echo $? 
[[ -e /doesnotexist ]]
echo $?



 MNXB01-2019 Bash Scripting  65/78Tutorial 3

Conditions: Exercises
Exercise 3.21: Execute the following commands. Do you 
understand the meaning and results? If not, ask me.

true

echo $? 

false

echo $? 

Parentheses are Aritmetic Expansion, and the logical operator && 
is the boolean AND. Check Lecture 3 and remember than in bash 
0=true 1=false
(( 0 && 0 ))

echo $? 

(( 1 && 0 ))

echo $? 

(( 1 && 1 ))

echo $?



 MNXB01-2019 Bash Scripting  66/78Tutorial 3

Control structures

Enable the machine to decide on actions 
depending on certain conditions. 
(if..then...else..fi)

Allow the code to loop until a certain 
condition is met (while...do...done)

Allow the code to loop for a definite 
number of times or over a list of objects 
(for...do...done)



 MNXB01-2019 Bash Scripting  67/78Tutorial 3

Control structures: 
if ... then … else .. fi

The BASH syntax is as follows:

  if <condition>; then
  <command1>;[<command2>;…]

  else   
  <commandA>;[<commandB>;…]

  fi



 MNXB01-2019 Bash Scripting  68/78Tutorial 3

Control structures: 
if ... then … else .. fi

-le = less than or equal

#!/bin/bash
# testif.sh
# run with: ./testif.sh arg1 arg2 arg3
#
# test that at least two arguments are passed to the script

if  [[ $# -le 2 ]];  then
    echo "Not enough arguments. Must be at least 3!";
    # exit with error, not zero
    exit 1;
else
    echo "More than 2 arguments. Good!";
    # exit without error, zero
    exit 0;
fi



 MNXB01-2019 Bash Scripting  69/78Tutorial 3

Exit values: the exit command

The exit command is used to terminate the program exactly where exit is 
called, that is, to break cycles and exit the program.

It takes in input the return value of the process: 

0 for SUCCES 

1 for ERROR

If you code cannot continue due to an error, you should always exit 1. 
Otherwise the code will continue running without the required information.
This is  useful in your script to detect if a command you run caused an error or 
did not complete properly.

You can check the exit value by getting the value of the $? variable:
      echo $?

This works with any linux program or command: if there is an error, the 
process should exit with $? ¹ 0

Exercise 3.22: check the exit value when you input no argument or three 
arguments to ./testif.sh [<argument1> <argument2> ...]



 MNXB01-2019 Bash Scripting  70/78Tutorial 3

Control structures: 
for ... do … done

Repeat something for a predefined number 
of times or for each element in a list.

Syntax:
for <i> in <list>; do 
   <command1>;[<command2>;…]
done

The interpreter will substitute <i> with an 
element in <list> inside the code block do … 
done and execute the code for each element.



 MNXB01-2019 Bash Scripting  71/78Tutorial 3

Control structures: 
for ... do … done

Print types of files in some directory,
default to the /etc directory

#!/bin/bash
# listfilestypes.sh
# run with: ./listfilestypes.sh <directory>
#
# Print the argument values
TARGETDIR=$1

# A typical use of IF: if no TARGETDIR defined, then x == x and the expression in brackets will

# be false, so the else branch will be executed and an error message will be shown.

if [ "x$TARGETDIR" == "x" ]; then
     TARGETDIR=~
     MESSAGE="No argument found. Listing filetypes for the $TARGETDIR directory by default"
else
     MESSAGE="Scanning filetypes for the ${TARGETDIR} directory"
fi

echo "$MESSAGE"

# scan all files in TARGETDIR

for somefile in ${TARGETDIR}/*; do
    echo "This is the file $somefile, with type:";
    # the file command tells you the type of a file.
    file $somefile
done



 MNXB01-2019 Bash Scripting  72/78Tutorial 3

Control structures: 
for ... do … done

Print the arguments using different 
condition approaches

#!/bin/bash
# testfor.sh
# run with: ./testfor.sh arg1 arg2 arg3 ...
#
# Print the argument values

echo “Using lists of elements”
index=1          # Reset argument counter
for arg in "$@"; do
    echo "Arg #$index = $arg"
    let "index+=1"
  done             # $@ sees arguments as separate words.

echo “Using C syntax for the condition”
for ((i=1 ; i <= $# ; i++ )); do
    echo "Argument $i is ${!i}";
done

● #$var forces the content 
of var to be a number

● Parameter substitution
 ${!var} Gets the value 
of a variable with the 
name $var instead of 
var



 MNXB01-2019 Bash Scripting  73/78Tutorial 3

Control structures: 
while … do … done

Keeps doing something as long as 
<condition> is satisfied.

Syntax:
while <condition>; do 
   <command1>;[<command2>;…]
done

The code contained inside 
do ... done keeps being executed. It will 
stop when <condition> is false.



 MNXB01-2019 Bash Scripting  74/78Tutorial 3

Control structures: 
while … do … done

Ask the user to enter a variable value 
(using the read command) until the string 
end is entered

#!/bin/bash
# testwhile.sh
# run with: ./testwhile.sh
#
# Continue asking numbers until the user writes “end”

while [ "$var1" != "end" ]; do     # while test "$var1" != "end"
  echo "Input variable value (end to exit) "
  read var1                   # Not 'read $var1' (why?).
  echo "variable value = $var1"   # Need quotes because of "#" . . .
  # If input is 'end', echoes it here.
  # Does not test for termination condition until top of loop.
echo
done  
exit 0



 MNXB01-2019 Bash Scripting  75/78Tutorial 3

Control Structures: Exercises

Exercise 3.23: Change the iftest.sh 
code to complain if the user did not write at 
least 5 command line arguments

Exercise 3.24: Change the 
listfiletypes.sh code to list the types of 
files in the folder /tmp by default, that is, if 
no command line argument is passed. 

Exercise 3.25: Change the testwhile.sh 
code to exit when the user writes bye!



 MNXB01-2019 Bash Scripting  76/78Tutorial 3

A bunch of commands you should 
know about

The “GNU userland”, the collection of commands that are usually shipped with linux, it’s a great collection of command line 
tools that can do a lot for you. Here I write some that are notable, with links to examples.
They mostly do string operations and can be used to cleanup or reformat a dataset.

grep – find all the occurences of a substring inside a file.
Example: grep expressiontofind filename.txt
https://www.geeksforgeeks.org/grep-command-in-unixlinux/

sed – substitute strings. The most used form is
sed ‘s/patterntofind/patterntosubstitute/’ filename.txt
https://www.geeksforgeeks.org/sed-command-in-linux-unix-with-examples/

cat - print a file
cat filename.txt

head, tail – print n lines from the top/bottom of a file, see Tutorial 2 slides
head -10 filename.txt ; tail -10 filename.txt

cut – remove section from each line of a file – can be used to extract columns
cut -d, -f5 filename.txt
https://www.thegeekstuff.com/2013/06/cut-command-examples/

tr – translate (substitute) characters
cat /etc/services | tr s z  (will make every s -> z)
https://www.thegeekstuff.com/2012/12/linux-tr-command

awk – a powerful line editor that can be programmed for tasks
https://likegeeks.com/awk-command/

curl and wget – programs used to download files 
https://www.keycdn.com/support/popular-curl-examples
http://www.linuxandubuntu.com/home/12-practical-examples-of-wget-command-on-linux

sort – orders lines of a file give a certain criteria, eventually based on columns or fields
sort -r -k2 -h /etc/services
https://www.geeksforgeeks.org/sort-command-linuxunix-examples/

wc – bytes, chars and lines counter
wc -l /etc/services
https://www.tecmint.com/wc-command-examples/

https://www.geeksforgeeks.org/grep-command-in-unixlinux/
https://www.geeksforgeeks.org/sed-command-in-linux-unix-with-examples/
https://www.thegeekstuff.com/2013/06/cut-command-examples/
https://www.thegeekstuff.com/2012/12/linux-tr-command
https://likegeeks.com/awk-command/
https://www.keycdn.com/support/popular-curl-examples
http://www.linuxandubuntu.com/home/12-practical-examples-of-wget-command-on-linux
https://www.geeksforgeeks.org/sort-command-linuxunix-examples/


 MNXB01-2019 Bash Scripting  77/78Tutorial 3

References

Bash scripting:
http://tldp.org/LDP/abs/html/

Interactive aid:
https://explainshell.com

http://tldp.org/LDP/abs/html/
https://explainshell.com/


 MNXB01-2019 Bash Scripting  78/78Tutorial 3

Picture reference (incomplete)

http://www.shorewatch.co.uk/cruester/ima
ges/tabkey.png

http://www.shorewatch.co.uk/cruester/images/tabkey.png
http://www.shorewatch.co.uk/cruester/images/tabkey.png

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78

