
 MNXB01-2019 - Working with git  1/64Tutorial 5

Working with GIT

Florido Paganelli
Lund University

florido.paganelli@hep.lu.se
Fysikum, Hus A, Room 403

Visiting time: 11:00-12:00 Every day
Or use Canvas
Or use github!

MNXB01 2019

mailto:florido.paganelli@hep.lu.se


 MNXB01-2019 - Working with git  2/64Tutorial 5

Required Software
Git - a free and open source distributed version control 
system

Gitg – a fast git repository viewer (there are many!)

Command line installation (bash):

sudo apt-get install git gitg
Note: this software is NOT installed by default by the Lubuntu system installation.

Platform Package names

Ubuntu, Debian git, gitg

RedHat, CentOS, Fedora, SuSE git, gitg

Windows http://www.jamessturtevant.com/posts/5-Ways-to- 
Install-git-on-Windows/

Mac OS http://www.macworld.co.uk/how-to/mac-software/ho
w-use-git-github-on-your-mac-3639136/

http://www.jamessturtevant.com/posts/5-Ways-to-
http://www.macworld.co.uk/how-to/mac-software/how-use-git-github-on-your-mac-3639136/
http://www.macworld.co.uk/how-to/mac-software/how-use-git-github-on-your-mac-3639136/


 MNXB01-2019 - Working with git  3/64Tutorial 5

Outline

What are version/revision control systems

Generic concepts of version/revision systems

git

Generic concepts of git

git tutorial

Additional useful commands



 MNXB01-2019 - Working with git  4/64Tutorial 5

Notation
I will be using the following color code for showing 
commands:

Application or program

app command --option=value -option value inputpar otherinputpar

command to application

Application options and values
 in different formats

First parameter 
to command

Second parameter 
to command

BLANK SPACES     will NOT be visible!

git clone https://github.com/floridop/MNXB01-2019 MNXB01-2019

Example:

Application or program

command to application

First parameter 
to command

Second parameter 
to command

https://github.com/floridop/MNXB01-2019


 MNXB01-2019 - Working with git  5/64Tutorial 5

Revision systems concepts



 MNXB01-2019 - Working with git  6/64Tutorial 5

Why version/revision systems?

Say you wrote some computer program in a text file. 

You discover a bug, something that does not work as it 
should, and you want to change it.

You fix the bug, save the file. Try the program again and… it 
doesn't work anymore!

What went wrong? Would be nice if you could compare 
what you changed...

Solution: make a backup copy before every (important) 
change!

Version systems make it easy to backup and compare 
changes

Revision Systems



 MNXB01-2019 - Working with git  7/64Tutorial 5

If you do many changes, you 
might not remember what 
changes you made. Version 
systems allow you to attach a 
comment to the change.

If you want to share your code 
with other developers, it's nice if 
everybody can see who changed 
what. Version systems allow you 
to author the changes so the 
others know what you're done. 
This helps sharing code.

Why version/revision systems?

Revision Systems



 MNXB01-2019 - Working with git  8/64Tutorial 5

Summary:

Backup each change in your code

Compare different versions of your code

Comment and annotate each change

Share among developers

Why version/revision systems?

Revision Systems



 MNXB01-2019 - Working with git  9/64Tutorial 5

Version systems: products and 
features

Product staging Local 
commit

diff Fork/branch 
management

Distributed/
Collaborative

Compatibility

CVS
(Current 
Version Stable)

N N Y Y N ?

SVN 
(SubVersioN)

N N Y N N ?

Git Y Y Y Y Y
SVN
CVS

Revision Systems



 MNXB01-2019 - Working with git  10/64Tutorial 5

Git: vocabulary and concepts



 MNXB01-2019 - Working with git  11/64Tutorial 5

What and why git

Was created by Linus Torvalds especially for kernel 
development

Highly distributed community contributions

Lots of people forking and writing their own version of drivers 
(later I'll explain this term)

Nowadays there are many collaborative websites 
systems that use it to share code (github, gitlab) and 
make it easier to integrate everyone's work with 
discussion and code revision/testing tools

Is being used by many because is a free solution that 
helps distributed cooperation

Becoming the most used among research projects

In other words, mostly fashion

GIT Concepts



 MNXB01-2019 - Working with git  12/64Tutorial 5

Git ain’t the best.

https://xkcd.com/1597/
GIT Concepts



 MNXB01-2019 - Working with git  13/64Tutorial 5

Why using git in this course

The VM you are using can be deleted any time. Everything 
you save in its virtual harddisk can be lost anytime.

The VM runs on the machine you’re sitting and it can be 
accessed by other users. Other users can change what 
you did on the machine and you will lose all data.

You will become a better programmer (but not necessarily 
a better person)

Suggestion: at the end of each tutorial, 
push your changes to the remote github repository 
we will create in the Homework.

The final course project material you will create can 
be only handed out using a github repository, so get 
familiar with git!

GIT Concepts



 MNXB01-2019 - Working with git  14/64Tutorial 5

Concepts of version systems in git
Repository: A database that contains the 
list of changes made.

A local git repository is shared locally on 
your machine in the .git invisible folder 

A remote git repository is shared on a 
remote server and can be reached using 
a URL, like 
https://github.com/floridop/MNXB01-2019.git

A bare git repository can be stored in 
any folder and contains data in a form 
that only the git code understands. Can 
be used to have multiple copies of the 
same repository. It can be used to share 
a repository without GitHub.

remote
repository

(usually bare)

Remote 
Server

Local
repository

synchronization
operations

GIT Concepts

https://github.com/floridop/MNXB01-2019.git


 MNXB01-2019 - Working with git  15/64Tutorial 5

Concepts of version systems in git

Repository: A database that 
contains the list of changes made.

Since git is distributed, there 
can be many remote and local 
repositories.

remote
repository

(usually bare)

Remote 
Server

Local
repository

synchronization
operations

remote
repository

(usually bare)

Remote 
Server

remote
repository

(usually bare)

Remote 
Server

Local
repository

Local
repository

GIT Concepts



 MNXB01-2019 - Working with git  16/64Tutorial 5

Concepts of version systems in git
Working directory: the latest version of a set of files that 
you want to work on. This is usually local to your machine.

It is usually the result of a clone, an exact copy, of some 
remote repository

You can synchronize the local git repository with remote 
ones using the push (send changes) and pull (retrieve 
changes) commands.

A bit like DropBox but NOT automatic.

.git

Working 
directory

remote
repository

(usually bare)

Remote 
Server
 e.g. github

pull

push

GIT Concepts



 MNXB01-2019 - Working with git  17/64Tutorial 5

.git

Working 
directory

Concepts of version systems

Previous Revision #:

hash1

When one is happy with the changes they 
made, it records them in the database by doing 
a commit

A committed set of files is called a revisions 
and gets a commit ID: every “version” of one 
or more files gets a revision tag. This can be 
a number, a label, a string. 

In git usually is an hash*, a strange sequence 
of symbols. It:

Identifies the repository and other details of 
when the changes where made

It’s universally unique, everywhere in the world 
that commit will represent a defined sequence of 
changes.

For this reason these systems are also known as 
Revision Systems, as every revision gets a label 
that depends on time and person who made the 
change.

*Hash: a special injective function that returns a value from a finite 
set of strings. The return values are unique under certain conditions.

Previous Revision #:

hash2
Previous Revision #:

hash3
Current Revision #:

hash4

GIT Concepts



 MNXB01-2019 - Working with git  18/64Tutorial 5

Commit example

commit 245dceab78b387020bf5c9de18e5ec599237e4dd (HEAD -
> master, origin/master, origin/HEAD)

Author: Florido Paganelli <florido.paganelli@gmail.com>

Date:   Thu Sep 12 14:24:32 2019 +0200

    fixed wrong formatting

    

    changed italic to bold

README.md

GIT Concepts



 MNXB01-2019 - Working with git  19/64Tutorial 5

Concepts of version systems
git basic terminology

The git command accepts subcommands to do operations on 
the database.

A brand new git repository is created with the command init

A brand new git repository always starts with a branch called 
master.

For every set of changes there is a commit.
Every commit generates a new revision with a different hash. 
This can be represented as an ordered graph like the one below. 
For every committed change a new hash.

The latest commit hash is called HEAD.

Previous Revision #:

hash1
Previous Revision #:

hash2
Previous Revision #:

hash3
Current Revision #:

hash4
Branch:
master

HEAD

file1 file2 file3 The content of each commit is a set of modified 
files, different from the previous commit. 

GIT Concepts



 MNXB01-2019 - Working with git  20/64Tutorial 5

Concepts of version systems
git branches

A repository might have one or more branches, that is, different 
version of the same repository which modify or propose different 
features.

They're called branches because they can be visualized like a tree 
as they diverge from some initial branch, usually called master.
Every branch has a name.

The latest commit of each branch is called the HEAD of that 
branch.

Previous Revision #:

hash1
Previous Revision #:

hash2
Previous Revision #:

hash3
Current Revision #:

hash4

Previous Revision #:

hash7
Current Revision #:

hash8

Current Revision #:

hash9

Branch:
master

Branch:
coolfeature

Branch:
dangerouschanges

HEAD

GIT Concepts



 MNXB01-2019 - Working with git  21/64Tutorial 5

Concepts of version systems
git branch

Every branch history is a continuation of the 
history where the master was branched.

It is possible to branch from a branch, not just 
from the master. Use with care, can be 
confusing!

Previous Revision #:

hash1
Previous Revision #:

hash2
Previous Revision #:

hash3
Current Revision #:

hash4

Previous Revision #:

hash7
Current Revision #:

hash8

Current Revision #:

hash9

Branch
master

Branch
coolfeature

Branch
dangerouschanges

GIT Concepts



 MNXB01-2019 - Working with git  22/64Tutorial 5

Concepts of version systems
git checkout

A branch can be made active with the checkout 
operation. When a branch is checked out you will 
be able to see its files in your working 
directory.

✔ To checkout a branch means to select a 
certain history of changes. 

Previous Revision #:

hash7
Current Revision #:

hash8
Branch

coolfeature Working 
directory

checkout
coolfeature.git

file1 file2 file3

GIT Concepts



 MNXB01-2019 - Working with git  23/64Tutorial 5

Concepts of version systems
git add

If one modifies or changes files contained in a 
certain revision, git can see it, and reports to the 
user.

Git gives the choice to add (include) these 
changes to the database. 

Previous Revision #:

hash7
Current Revision #:

hash8
Branch

coolfeature Working 
directory

add
.git

file1 file2 File3
(changed)

File4
(new)

changed
added

GIT Concepts



 MNXB01-2019 - Working with git  24/64Tutorial 5

Concepts of version systems
git add

Once files are added, they are marked to be part 
of a next revision, but they’re not yet saved in 
the database. 

In git slang, they’re staged – shortlisted to be 
part of the next commit.

Previous Revision #:

hash7
Current Revision #:

hash8
Branch

coolfeature Working 
directory

.git
file1 file2 File3

(changed)
File4 stagedadd

GIT Concepts



 MNXB01-2019 - Working with git  25/64Tutorial 5

Concepts of version systems
git commit

Staged files will then be actually become part of 
a new revision in the database once the user 
commits them.

Previous Revision #:

hash7
Branch

coolfeature Working 
directory

.git
file1 file2 File3

(changed)
File4

Current Revision #:

hash10
Previous Revision #:

hash8

commit

GIT Concepts



 MNXB01-2019 - Working with git  26/64Tutorial 5

Merge of  source coolfeature into target master

Merging
Once the changes in a branch are accepted, these are usually integrated back in the 
master with the merge operation

The result of a merge operation between a source and a target branch  is a merged 
history of commits between the two branches. The commits in the source branch 
are copied to the target branch.

A new HEAD is created with a commit that says that there was a merge in a given 
moment in time.

The result of this two operations may look like the one in the example below
1. Checkout target: git checkout master
2. Merge with source: git merge coolfeature

After the merge the source branch can be deleted.

Previous Revision #:

hash1
Previous Revision #:

hash2
Previous Revision #:

hash3
Current Revision #:

hash4

Previous Revision #:

hash7
Current Revision #:

hash8

Branch:
master

Branch:
coolfeature

HEAD

Previous Revision #:

hash7
Current Revision #:

hash8
Current Revision #:

hash11

GIT Concepts



 MNXB01-2019 - Working with git  27/64Tutorial 5

Concepts of version systems
git push

All the changes can now 
be sent to a remote 
server, to a remote 
repository usually called 
origin, using the push 
command

Previous Revision #:

hash7
Branch

coolfeature Working 
directory

.git
file1 file2 File3

(changed)
File4

Current Revision #:

hash10
Previous Revision #:

hash8

push

origin
repository

Remote 
Server

GIT Concepts



 MNXB01-2019 - Working with git  28/64Tutorial 5

Concepts of version systems
git clone and pull 

All the changes can now be retrieved by 
another computer from the remote 
repository origin. 

The first time using the 
clone command (initialization)

Every other time using the 
pull command (get updates)

New 
Working 
directory

.git
clone
pull

origin
repository

Remote 
Server

GIT Concepts



 MNXB01-2019 - Working with git  29/64Tutorial 5

What is a software fork

In software engineering, a fork of a software 
project A it's a copy of the software source code 
of A to develop features for a project B,C,... that 
follow completely independent choices from 
project A.

project A
project A

project B

project C

All projects share the same
code until this point in time

past / present

fu
tu

re

GIT Concepts

TIME



 MNXB01-2019 - Working with git  30/64Tutorial 5

Concepts of version systems
forking 

A fork happens usually between two users or organizations 
writing software, A and B

A forks B’s repository in git is done by duplicating (cloning) the 
repository of a project you want to work on, called upstream

User A works on their fork independently. At some point they 
might want to send the changes they made back to the B’s 
upstream repository.

origin
repository

Remote 
Server

upstream
repository

Remote 
Server

Fork

A B

GIT Concepts



 MNXB01-2019 - Working with git  31/64Tutorial 5

Concepts of version systems
pull requests 

Pull requests are a way to propose changes to the forked repository so 
that the owner of the upstream repository can review them and discuss 
them before approval

If they are accepted, they will be integrated

If they are rejected, a discussion can be made about why and how to 
make them acceptable.

After this process the user A will need to pull the changes from upstream 
for origin to be in sync with upstream.

origin
repository

Remote 
Server

upstream
repository

Remote 
Server

Pull request
here’s my changes, would 
you like to add them?

No
please make these
changes first!

Yes

A B

GIT Concepts



 MNXB01-2019 - Working with git  32/64Tutorial 5

Upstream, origin, local
A Tale of a River

     UPSTREAM
    florido’s github

Local
repository

VM

    ORIGIN
      your Fork on github

PULL 
REQUEST

Pull from 
upstream

Pull and 
push origin

Kachemak Bay, AK. Photo credit: Alaska Shorezone. 
https://medium.com/@AKSalmonProject/where-the-river-meets-the-tides-salmon-and-estuaries-a9e7aaf78519

Fork

GIT Concepts



 MNXB01-2019 - Working with git  33/64Tutorial 5

Conflicts

In a distributed development environment, different user may modify the same file

When the same file is modified more or less around the same line, and you try to 
pull from repositories where the modifications have been made, you may incur in a 
conflict

A conflict is a set of changes that must be reviewed in order to sort out which of 
A’, A’’ or A’’’ should go into the final result

This usually can only be solved by a developer knowledgeable of the code, and it 
resolves in a n-way-merge. An example of 3-way merge is at slide 50.

The result is often an A’’’’ file that integrates all the changes all the developers 
made.

origin
repository

Remote 
Server

upstream
repository

Remote 
Server

A

B

Local
repository

A' A''

A''’

pull pull
A', 
A'' 

or A’’’
?

GIT Concepts



 MNXB01-2019 - Working with git  34/64Tutorial 5

GitHub

A cloud service that offers for free:

hosting for git projects (they run the git server)

A web interface to collaborate on projects

Acquired in 2018 by Microsoft, now offers also

Private projects (can’t be seen by other users)

Enterprise services

They claim they will not use your code except for the 
purposes of their service and that you retain all the 
copyrights on the code.

It is not an open source project.
https://www.github.com/

Open source alternatives: Gitlab
https://about.gitlab.com/

Octocat



 MNXB01-2019 - Working with git  35/64Tutorial 5

Homework Tutorial 5
1)Create a github account (you should already have it after the tutorial)

2) Fork my repository on github:
https://github.com/floridop/MNXB01-2019

3) Clone the repository you forked on your local machine or virtual machine, and enter the cloned folder.

4)Using the git remote command, add: 

your fork repository https://github.com/yourgithubusername/MNXB01-2019.git as the remote origin 
(should be already there!). Change yourgithubusername to the username you created during the tutorial.

My remote repository at https://github.com/floridop/MNXB01-2019.git  as the upstream remote 
repository 

5)Create a new branch named hw3hw5 and checkout the branch

6)At the root of the repository, create a folder with your name and the first three letters of your last name. For 
example my name is Florido Paganelli, I created:

floridopag

7) In the above folder, create a folder called tutorial3 and copy all the the files contained in my tutorial3 folder.

cp -r ../../floridopag/tutorial3 . 
Don’t miss the dot at the end of the line! “It means copy in the directory where I am” 

8) git-add the newly copied files and commit. Remember to write an explanatory comment in the 
commit. Stupid comments will be rejected.

9) push to your remote fork origin the hw3hw5 branch

10)   Submit me a pull request for that branch on github.

11)   Copy the link of your github fork and a link to your pull request on Canvas.

1)An example of github fork link is as follows:
https://github.com/floridop/git-it-electron

2)An example of github merge request link is as follows:
https://github.com/jlord/git-it-electron/pull/204

Homework 5



 MNXB01-2019 - Working with git  36/64Tutorial 5

Git interactive tutorial



 MNXB01-2019 - Working with git  37/64Tutorial 5

Preparing for the tutorial

Create a folder in your home folder 
mkdir ~/gittutorial/

cd ~/gittutorial

Download the tutorial app:
For the LubuntuVM (32 bit):
wget http://www.hep.lu.se/staff/paganelli/fileshare/gitmnxb01-ia32.tgz

If you’re using your own laptop (64 bit):
wget http://www.hep.lu.se/staff/paganelli/fileshare/gitmnxb01-x64.tgz

Unpack the tutorial app:

32bit: tar zxvf gitmnxb01-ia32.tgz

64bit: tar zxvf gitmnxb01-x64.tgz

Enter the created directory:

32bit: cd Git-it-linux-ia32

64bit: cd Git-it-linux-x64

Start the tutorial app:

./Git-it &

Reminder: the ~ symbol means
 “my home folder”, that is
                             /home/courseuser/
the listed commands will 
create (make directory) and go inside 
(change directory)                        
/home/courseuser/gittutorial/

Interactive Tutorial

Note: only the English version of the 
tutorial is customized for this course.
I did not modify the versions for other 
languages, so if you change language 
things might be a bit different – but you 
will still learn!

http://www.hep.lu.se/staff/paganelli/fileshare/gitmnxb01-ia32.tgz
http://www.hep.lu.se/staff/paganelli/fileshare/gitmnxb01-x64.tgz


 MNXB01-2019 - Working with git  38/64Tutorial 5

Have fun with the Git-it tutorial!

Created by jlord, see
https://github.com/jlord/git-it-electron

Contributed by various authors

Written in JavaScript and HTML using a 
framework called node.js

Once done with the interactive tutorial, 
read the slides for some other useful 
commands and tools.

Interactive Tutorial

https://github.com/jlord/git-it-electron


 MNXB01-2019 - Working with git  39/64Tutorial 5

Best practices in the lab

Since the VM is shared, I suggest that at the beginning of each 
lecture, after turning on the VM, you open a terminal and:

Always check the global variables and make sure they refer to your user:
git config –-global --list

Always redefine the git --global user.name and user.username as in the 
tutorial with your own name:
git config –-global user.name yourusername
git config –-global user.usernamename yourusername

Make sure there is a folder ~/git/yourGITusername with your username. 
For example, I’d do:
mkdir -p ~/git/floridopag (will give you an error if the folder already exists)
cd ~/git/floridopag

Get into your local copy of your fork
cd MNXB01-2019

If the above folder does not exist, clone your git repository (use your username not 
mine!):
cd ~/git/floridopag
git clone https://github.com/floridopag/MNXB01-2019.git
cd MNXB01-2019

Print this slide as a reminder of what to do!

Best Practices

https://github.com/


 MNXB01-2019 - Working with git  40/64Tutorial 5

A word on privacy and security

When you fork my MNXB01-2019 repository and submit pull requests, 
everything will be public. 
Others will see your code.

It is perfectly ok for me because I believe one learns coding by looking at other 
people’s code and sharing/discussing coding with others.

If you’re not happy with it, you can create your own private repository to store 
the material produced during the MNXB01 course, so that nobody else can see 
it.

However, for the Tutorial 3 (bash) I will require that your ultimate 
submission happens as a pull request to my repository. From that 
moment on your bash code for the homework will be public.

The grading will be done on canvas, not on github

If you prefer not to write your name on the github repository, you can 
write your nickname, but make sure I know who you are. I will not 
correct submissions if I don’t have  a mapping nickname→student. You 
can send me this information privately if you don’t want others to know 
who you are.



 MNXB01-2019 - Working with git  41/64Tutorial 5

Useful git commands



 MNXB01-2019 - Working with git  42/64Tutorial 5

Setting your default editor with 
git

If you commit without the -m option, git will automatically 
open a text editor for you to write a commit comment.

It is good practice to:

write a commit title

leave a blank line

describe your commit in more detail.

We will use geany as the default editor, but you can use 
any editor you like. 

If you don't configure anything, the default is a text editor 
called nano, which for some is a bit weird at first. But I 
suggest to use it so you just use the command line. Press 
“CTRL + O” to save the file, ”CTRL + X” to exit.

Useful GIT commands



 MNXB01-2019 - Working with git  43/64Tutorial 5

Setting geany as the default git 
editor

Run:
  git config core.editor geany

Note that the commit will only happen ONCE 
when you save the file in geany.

Test by running

  git commit

If you don't like it, revert to default by 
writing

  git config --unset core.editor

Useful GIT commands



 MNXB01-2019 - Working with git  44/64Tutorial 5

Git log, commit history, 
revision numbers

All the commit history with you messages 
can be browsed using the command
  git log

> git log
commit 30d4b3805d7de65622cfcd21a122644e33ab76dc
Author: Florido Paganelli <florido.paganelli@hep.lu.se>
Date:   Fri Sep 1 17:39:13 2017 +0200

    second change

commit c9af94904c6868ef136d75730fbde63e0a15cf31
Author: Florido Paganelli <florido.paganelli@hep.lu.se>
Date:   Fri Sep 1 17:38:11 2017 +0200

    Created readme

30d4b3805d7de65622cfcd21a122644e33ab76dc

Revision number,
an hash

Commit
comments

c9af94904c6868ef136d75730fbde63e0a15cf31

Useful GIT commands



 MNXB01-2019 - Working with git  45/64Tutorial 5

Git log, commit history, 
revision numbers

To see which files have changed for each 
commit:
  git log --name-status

Useful GIT commands



 MNXB01-2019 - Working with git  46/64Tutorial 5

Removing or renaming a file
from the git database

Removing: Sometimes one can decide that files in the directory 
should not be part of the repository anymore. Rather than 
deleting them with the rm command, one can use
  git rm filename

Remove a file using the above command.

Check the output of git status .

git commit -m 'I have deleted file filename' 
Remember: CLEARLY STATE that you removed some files in the 
commit message!

Renaming: git mv oldfilename newfilename is equivalent to
  git rm oldfilename  
followed by
  git add newfilename  

Useful GIT commands



 MNXB01-2019 - Working with git  47/64Tutorial 5

Graphical Diffing
Run
git diff

> git diff
Index: thisisfloridofile.txt
===================================================================
--- thisisfloridofile.txt (revision 6)
+++ thisisfloridofile.txt (working copy)
@@ -1 +1,2 @@
 Hello! this is florido's file.
+I am adding this change.

A' A''
==
?
!=

Line numbers of the two files:
-1 : showing line 1 of of file ---

+1,2 : showing lines 1 to 2 of file +++

If you want a graphical tool to check the diffs, I suggest meld
(should be already installed, but if not: sudo apt-get install meld 

Use meld as the default diff tool:
  git config diff.tool meld
  git difftool thisisfloridofile.txt

Useful GIT commands



 MNXB01-2019 - Working with git  48/64Tutorial 5

Undoing 
not committed changes

Say that we are not happy with the changes we just made to a single 
file and we want to go back to the latest commit (also called HEAD)

Change one of the files in your repository and issue git status.

The best to do is a simple checkout of the file from the last commit
git checkout thisisfloridofile.txt
git diff

Careful! You will lose all the changes done and not committed!!!

Note that this is equivalent to checkout the file at the latest revision 
HEAD:
git checkout HEAD thisisfloridofile.txt

Checking out HEAD of all files in a directory will cancel all the changes 
done to the uncommitted files in that directory.
git checkout HEAD *

Play a bit with these commands by changing files and see what 
happens.

Useful GIT commands



 MNXB01-2019 - Working with git  49/64Tutorial 5

Reverting 
to a previous revision

Say that we don't like the current revision state, and we 
want to roll back the code to a state of a different revision 
back in time.

The main suggestion is:
try to never go back in the revision history.
This is actually nice because in a collaborative environment, 
keeps track of who-did-what with no cheating allowed :)
Unfortunately git allows for “cheating” by changing the 
revision history. It can be useful sometimes, but must be 
used with extreme care. Changing the revision history 
gives no UNDO.

To experience with this, change some files and commit.

Useful GIT commands



 MNXB01-2019 - Working with git  50/64Tutorial 5

Reverting to a previous revision
the safe way: revert

The revert command restores the state of 
all files at a certain revision to the current 
working dir.

Usually the output of a revert gives hints 
about the steps to take before committing.

Make sure you have at least three commits 
(check git log)

Create a fourth commit

Useful GIT commands



 MNXB01-2019 - Working with git  51/64Tutorial 5

Reverting to a previous revision
the safe way: revert

Try to git revert everything to your second 
commit in the log:
git revert commithash

Example:
git revert c9af94904c6868ef136d75730fbde63e0a15cf31

Read the git status output to see what changed

Take action to make the files ready for commit, and 
commit

Git will automatically start a commit and open the text 
editor for you. It will add the “Revert commithash” 
comment to your commit and wait for your input.

Useful GIT commands



 MNXB01-2019 - Working with git  52/64Tutorial 5

Reverting to a previous revision
the unsafe way: reset

The reset command does something different. It does not 
preserve history and allows you to modify an existing commit. 
For a detailed explanation see 
https://www.atlassian.com/git/tutorials/undoing-changes

Use it only on a private branch and never on a branch you 
share with  others (typically a master branch)

Additionally, I suggest to use it only when one of these two 
happen:

You already staged some changes to a file and you want to unstage 
them
       git reset filetounstage

You are totally unhappy with whatever you did so far and want to 
unstage all staged files: 

git reset

Useful GIT commands

https://www.atlassian.com/git/tutorials/undoing-changes


 MNXB01-2019 - Working with git  53/64Tutorial 5

Fixing commit mistakes

Commit allows you to amend or change the latest commit if, 
for example, you forgot a file or  you wrote the wrong 
comment:
       git commit --amend

Note that this will create a new revision hash, and will 
DELETE the previous commit hash. So be sure you are done 
with amend before you push to your remote repository.

NEVER DO THIS AFTER YOU PULLED YOUR LOCAL 
BRANCH TO A REMOTE REPOSITORY UNLESS YOU’RE 
THE ONLY USER OF THE REMOTE REPOSITORY.

Seehttps://git-scm.com/book/id/v2/Git-Basics-Undoing-Things

Useful GIT commands

https://git-scm.com/book/id/v2/Git-Basics-Undoing-Things


 MNXB01-2019 - Working with git  54/64Tutorial 5

Graphical Clients

Want to try a graphical client?

Minimalistic one: in the folder where a git 
repository exists, run

gitg &
Check out how it shows branches!

Feature-rich one (not available in repositories):
https://www.gitkraken.com/

This one is NOT available on Lubuntu repositories. 
You need to download it from the internet if you want 
the latest version.

Useful GIT commands



 MNXB01-2019 - Working with git  55/64Tutorial 5

Additional material



 MNXB01-2019 - Working with git  56/64Tutorial 5

Merging

Suppose we have two versions of a document with different contents

We want to make one out of two

This is often referred as three-way-merge

We need to choose which part of each document we want to keep

There exist tools to do it, for example the excellent meld

git can attempt to do merges for us:

If the merges are simple, i.e. the changed content of A' can be easily mixed with that  of 
the content of A''. For example, the documents differ a little but the changes in each 
document are not overlapping.

If we provide it with some hint on how to do the merges

If the above fail, it will ask us to do the merge manually, for example using meld

The most frequent case of merge is in case of conflicts, we will not see them in 
this course.   

A'
A' + A''

A''

Additional Material



 MNXB01-2019 - Working with git  57/64Tutorial 5

Merging with meld
A'

A' + A''
A''

1. Arrows can be used to merge the highlighted content into the pointed file

2. save the result by pressing the save button (saves all modified files!)

Additional Material



 MNXB01-2019 - Working with git  58/64Tutorial 5

References
git cheat sheets:
https://services.github.com/on-demand/downloads/github-git-cheat-sheet.pdf
https://jan-krueger.net/wordpress/wp-content/uploads/2007/09/git-cheat-sheet.pdf
https://www.atlassian.com/git/tutorials/atlassian-git-cheatsheet

Quick guide to githttp://rogerdudler.github.io/git-guide/

Jlord's git-it:
https://github.com/jlord/git-it-electron

Merging with meld
https://www.youtube.com/watch?v=3Qynj8WUwgs

Reverting
https://www.atlassian.com/git/tutorials/undoing-changes
https://git-scm.com/book/id/v2/Git-Basics-Undoing-Things

Pictures references
https://openclipart.org/

http://www.libreoffice.org/

https://services.github.com/on-demand/downloads/github-git-cheat-sheet.pdf
https://jan-krueger.net/wordpress/wp-content/uploads/2007/09/git-cheat-sheet.pdf
http://rogerdudler.github.io/git-guide/
https://github.com/jlord/git-it-electron
https://www.atlassian.com/git/tutorials/undoing-changes
https://git-scm.com/book/id/v2/Git-Basics-Undoing-Things


 MNXB01-2019 - Working with git  59/64Tutorial 5

During the tutorial you'll be asked many times to do things 
with files. For those of you not familiar with file editing, 
here's a small how-to.

There are many ways of creating a file. 
One way is by using a text editor

The favorite text editor for this course is called geany. Can 
you find the icon in the menu? Open it by clicking on the 
icon.

Alternatively, open a terminal                and write the 
command: 
                   geany &

(the & symbol sends the command execution in background, see tutorial 1b!)

Creating and editing a file



 MNXB01-2019 - Working with git  60/64Tutorial 5

Editing and saving a file:
create new



 MNXB01-2019 - Working with git  61/64Tutorial 5

Editing and saving a file:
write something



 MNXB01-2019 - Working with git  62/64Tutorial 5

Editing and saving a file:
save or save as



 MNXB01-2019 - Working with git  63/64Tutorial 5

Editing and saving a file:
choose location and filename

1

2

3



 MNXB01-2019 - Working with git  64/64Tutorial 5

Editing and saving a file


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

