
Introduction to Programming and Computing for
Scientists (2019 HT)

Tutorial-6: First steps with C++ programming (part 2)

Balázs Kónya

HTTP://WWW.HEP.LU.SE/COURSES/MNXB01

Programming for Scientists Tutorial 7 1 / 8

Functions in C++
• Theoretically all the code could be written inside a single main()

function ...

• However, for maintainability and manageability reasons, it is better to
break it into smaller procedures. These are called functions.

• Implementing a C++ function involves the following elements:
• Function definition

• Consists of header and body
• Body is the source code that makes up the function
• Header specifies return value, name and parameter list

• Function prototype (declaration)
• Functions must be declared before they are called
• Prototypes usually specified in header files that are called via

the #include statement
• Declare the function BEFORE the main(){}

• Function call
• The statement that executes a function is called a function call
• Function calls can be specified any time
• Can be used in assignments

• later topics: pass by reference or pointers

Balázs Kónya

int sumup(int x)
{
int sum, y = 5;
sum = x + y;
return sum;

}

int sumup(int);

int bignumber, inputnumber;
inputnumber = 12;
bignumber = sumup (inputnumber);

Programming for Scientists Tutorial 7 2 / 8

Variable scope within function
• A variable is a “name” that is associated with memory reserved for storing the

variable's value.

• Every variable has a name, a type, a value and a scope/lifetime:

• Scope: a variable can be global or local:

• Variables declared outside functions, including main(), are global. They
exist for the duration of a program and can be accessed from anywhere
in the code.

• Variables declared inside functions are local to those functions.

• Local variables may be accessed only inside the block in which they are
declared.

• When a function begins, it allocates space on the stack to hold its local
variables.

• This space exists only while the function is active, after the function returns,
it deletes the allocated stack space, including all local variables.

Balázs Kónya Programming for Scientists Tutorial 7 3 / 8

Functions
Exercise 5: In this exercise, you're required to create a user-defined function to
capture the program logic of the main program and call that function from main().

Step 1) write a small program that asks for two numbers, compares those numbers
and prints out the larger one:

Balázs Kónya Programming for Scientists Tutorial 7 4 / 8

// small progrom to find the larger number

int main()
{
// ask the user to enter two numbers on the keyboard

"enter the first number:"

"enter the second number:"

// compare the two numbers and find out which is the larger

if (write here the condition){
write here what should happen in case the condition is true

}

//print out the larger number

"The larger number is "
}

Functions
Exercise 5: In this exercise, you're required to create a user-defined function to
capture the program logic of the main program and call that function from main().
Step 2) Rewrite your monolithic code so that it captures the „logic” in a function

Balázs Kónya

#include <iostream>
using namespace std;

int main()
{
int first, second, larger;
cout<<"enter the first number:" << endl;
cin>>first;
cout<<"enter the second number:" << endl ;
cin>>second;

// The program logic that can be turned into a function
larger = second;

if (first > second){
larger= first;

}
// Printing the result
cout << "The larger number is " << larger << endl ;

}

Programming for Scientists Tutorial 7 5 / 8

Functions
Exercise 5: In this exercise, you're required to create a user-defined function to
capture the program logic of the main program and call that function from main().
Step 2) Rewrite your monolithic code so that it captures the „logic” in a function

Balázs Kónya

#include <iostream>

//function declaration

type name_of_the_function(type parameter 1, type parameter 2);

int main() {

//function call

larger = name_of_the_function();

cout << "The larger number is " << larger << endl ;
}

//function definition

type name_of_the_function(type parameter 1, type parameter 2) {

// Write the actual function code here

return some_variable;

}
Programming for Scientists Tutorial 7 6 / 8

Functions and scope of variables
Exercise 6: The program below will not compile because of scope errors. Investigate
which variables are used out-of-scope and comment out the corresponding lines.

Balázs Kónya

#include <iostream>
using namespace std;
int globalScope = 0; //This is a global variable, visible everywhere.

void foo() {
int fooScope = 1; //Only visible within foo function
cout << "fooScope: " << fooScope << endl;
cout << "localScope: " << localScope << endl;

}
int main() {

cout << "globalScope: " << globalScope << endl;

{ //Any block declares a scope, even this useless one
int localScope = 3;
cout << "localScope: " << localScope << endl;
foo();
cout << "fooScope: " << fooScope << endl;
int globalScope = 100; // variable hiding, very bad practice!
cout << "globalScope: " << globalScope << endl;

}
cout << "localScope: " << localScope << endl;
cout << "globalScope: " << globalScope << endl;

}

Programming for Scientists Tutorial 7 7 / 8

Homework
• You are asked to fix a broken code. See details in Canvas.

Balázs Kónya Programming for Scientists Tutorial 7 8 / 8

