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IV. Space-time symmetries

 Conservation laws have their origin in symmetries and invariance 
properties of the underlying interactions

 Exact symmetry implies a conservation law an observable which absolute 
value can not be defined (“non-observable”)

Symmetry transformation
Conservation law or 

selection rule
Non-observable

Space translation: x x+x momentum absolute spatial position

Rotation: x x’ angular momentum absolute spatial direction

Time translation: t t+t energy absolute time

Reflection: x -x parity “handedness” (absolute generalized right/left)

Charge conjugation: q -q particle-antiparticle symmetry absolute sign of electric charge

 eiq charge q relative phase between states of different q

eiL lepton number L relative phase between states of different L

 eiB baryon number B relative phase between states of different B

Symmetries, conservation laws and “non-observables”:
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Translational invariance

 When a closed system of particles is moved from from one position in 
space to another, its physical properties do not change

Considering an infinitesimal translation xi x'i xi x+= , the 
Hamiltonian of the system transforms as:

H x1 x2  xn    H x1 x+ x2 x+  xn x+   

In the simplest case of a free particle,

H
1

2m
-------2–

1
2m
-------

x2

2








–
y2

2




z2

2







+ += = (36)

From Equation  (36) it is clear that

H x'1 x'2  x'n    H x1 x2  xn   = (37)

which is true for any general closed system
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 The Hamiltonian is invariant under the translation operator D̂ , which is 

defined as an action onto an arbitrary wavefunction  x  such that

D̂ x   x x+  (38)

For a single-particle state ' x  H x  x = , from (38) one obtains:

D̂' x  ' x x+  H x x+  x x+ = =

Since the Hamiltonian is invariant under translation, 

D̂' x  H x  x x+ = , and using the definitions once again,

D̂H x  x  H x D̂ x = (39)

 It is said that D̂  commutes with Hamiltonian 

(a standard notation for this is D̂ H  D̂H HD̂– 0= )
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Since x  is an infinitely small quantity, translation (38) can be expanded:

 x x+   x  x  x += (40)

Form (40) includes explicitly the momentum operator p̂ i–= , hence the 

translation operator D̂  can be rewritten as 

D̂ 1 i x p̂+= (41)

Substituting (41) to (39), one obtains

p̂ H  0= (42)

which is simply the momentum conservation law for a single-particle 
state whose Hamiltonian in invariant under translation.

Generalization of (41) and (42) for the case of multiparticle state leads to 
the general momentum conservation law for the total momentum 

p pi
i 1=

n

=
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Rotational invariance

 When a closed system of particles is rotated about its centre-of-mass, 
its physical properties remain unchanged

Under a rotation about e.g. z-axis through an angle , coordinates 
xi yi zi   transform to new coordinates x'i y'i z'i   as follows:

x'i xi cos yi sin–=

y'i xi sin yi cos+=

      z'i z= (43)

Correspondingly, the new Hamiltonian of the rotated system will be the 

same as the initial one, H x1 x2  xn   =H x'1 x'2  x'n   

Considering rotation through an infinitesimal angle  , equations (43) 
transform to

x' x y   , y'– y x  , z'+ z= = =
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A rotational operator R̂Z is introduced by analogy with the translation 

operator D̂ :

R̂z x   x' = x y  y x,z+–  (44)

Expansion to first order in   gives:

                   x'   x   y
x



–= x

y


– 
 x  1 i L̂z+  x =

where L̂z is z-component of the orbital angular momentum operator L̂ :

L̂z i x
y


y
x


– 
 –=  (in classical mechanics L r p Lz xpy ypx– == )

 For a general case of rotation about an arbitrary direction specified by a unit 
vector n , L̂Z  has to be replaced by the corresponding projection of L̂ : L̂ n , 
giving

R̂n 1 i  L̂ n += (45)
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Considering R̂n  acting on a single-particle state ' x  H x  x =  and 
repeating same steps as for the translation case, one gets:

R̂n H  0=

L̂ H  0=

(46)

(47)

This applies to a spin-0 particle moving in a central potential, i.e., in a field 
that does not depend on a direction, but only on the absolute distance.

 If a particle posseses a non-zero spin, the total angular momentum is 
the sum of the orbital and spin angular momenta:

Ĵ L̂ Ŝ+= (48)

and the wavefunction is a product of the independent space 

wavefuncion  x  and spin wavefunction :

  x =
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For the case of spin-1/2 particles, the spin operator is represented in 
terms of Pauli matrices :

Ŝ
1
2
---= (49)

where has components (recall Chapter I.):

1
0 1

1 0 
 
 

= , 2
0 i–

i 0 
 
 

= , 3
1 0

0 1– 
 
 

= (50)

Let us denote now spin wavefunction for spin “up” state as  =  
(Sz 1 2= ) and for spin “down” state as  =  (Sz 1– 2= ), so that

 1

0 
 
 

 ,  0

1 
 
 

= = (51)

Both  and  satisfy the eigenvalue equations for operator (49):

Ŝz
1
2
--- , Ŝz

1
2
---–= =
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Analogously to (45), rotation operator for a spin-1/2 particle generalizes to

R̂n 1 i  Ĵ n += (52)

When the rotation operator R̂n acts onto a wave function   x = , 

components L̂  and Ŝ  of Ĵ  act independently upon the corresponding 
wave functions:

Ĵ L̂ Ŝ+  x  L̂ x    x  Ŝ += =

 That means that although the total angular momentum has to be conserved,

Ĵ H  0=



the rotational invariance does not in general lead to the conservation of L̂  and Ŝ  
separately:

L̂ H  Ŝ H  0–=

However, presuming that the forces can change only orientation of the 
spin, but not its absolute value, one can conclude that



H L̂2  H Ŝ2  0= =
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 Good quantum numbers are those which are associated with 
conserved observables (operators commute with the Hamiltonian)

Spin is one of the quantum numbers which characterize any particle – 
elementary or composite. 

Spin of a composite particle is the total angular momentum J  of its 
constituents in their centre-of-mass frame

Quarks are spin-1/2 particles  the spin quantum number J of hadrons can be either 
integer or half-integer 

Spin projections on a chosen z-axis – Jz – can take any of 2J+1 values, from -J to J 
with the “step” of 1, depending on the particle’s spin orientation

Usually, it is assumed that  L and S are “good” quantum numbers together with J, 
while Jz depends on the spin orientation.



Figure 72:   A naive illustration of possible Jz values for spin-1/2 and spin-1 particles

z
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Using “good” quantum numbers, one can refer to a particle via 
spectroscopic notation, like

L
2S 1+

J (53)

 Following chemistry traditions, instead of numerical values of L=0,1,2,3..., letters 
S,P,D,F... are used correspondingly

 In this notation, the lowest-lying (L=0) bound state of two particles of spin-1/2 (a 
meson) will be 1S0 or 3S1 



Figure 73:   Quark-antiquark states for L=0
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 For mesons with L , possible states are: 1LL , 3LL+1 , 3LL , 3LL-1

 Baryons are bound states of 3 quarks  there are two orbital angular 
momenta connected to the relative motion of quarks.

Figure 74:   Internal orbital angular momenta of a three-quark state
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 total orbital angular momentum is L=L12+L3 .

 spin of a baryon S=S1+S2+S3  S=1/2 or S=3/2

Possible baryon states:
2S1/2 , 4S3/2 (L = 0)
2P1/2 , 2P3/2 , 4P1/2 , 4P3/2 , 4P5/2 (L = 1)
2LL+1/2 , 2LL-1/2 , 4LL-3/2 , 4LL-1/2 , 4LL+1/2 , 4LL+3/2 (L)
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Parity

 Parity transformation is the transformation by reflection:

xi x'i xi–= (54)

A system is said to be invariant under parity transformation if 

H x1 x2  xn– ––  H x1 x2  xn  =

 Parity is not an exact symmetry: it is violated in weak interactions!

 Absolute handedness can actually be defined

A parity operator P̂  is defined as

P̂ x t  Pa x– t  (55)

Two consecutive reflections must result in a system identical to the initial: 

P̂2 x t   x t = (56)

 From equations (55) and (56), Pa +1 , -1=
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Consider a particle wavefunction which is a solution of the Dirac equation 

(16): 
p

x t  u p ei px Et– = , where u(p) is a four-component spinor 

independent of x. Parity operation on such a wavefunction is then:

P̂
p

x t  Pau p– ei p–  x–  Et– = (57)

 Particle at rest (p 0= ) is an eigenstate of the parity operator:

P̂0 x t  Pau 0 e i– Et Pa0 x t == (58)

 Eigenvalue Pa is called the intrinsic parity of a particle a: intrinsic parity is parity of 
a particle at rest

 Different particles have different, independent, values of parity Pa. For 
a system of n particles,

P̂ x1 x2  xn t    P1P2Pn x1 x2  xn t– –– 
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Polar coordinates offer a convenient frame: parity transformation is
r r' r ,  '   ,  '–  += = =

and a wavefunction can be written as

nlm x  Rnl r Yl
m   = (59)

In Equation (59), Rnl is a function of the radius only, and Yl
m  are spherical 

harmonics, which describe angular dependence.

Under the parity transformation, Rnl does not change, while spherical 
harmonics change as

Yl
m    Yl

m  –  +  1– lYl
m   =


P̂nlm x  Panlm x–  Pa 1– lnlm x = =

 A particle with a definite orbital angular momentum is also an eigenstate of parity 
with an eigenvalue Pa(-1)l.
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Considering only electromagnetic and strong interactions, and using the 
usual argumentation, one can prove that parity is conserved:

P̂ H  0=

Recall: the Dirac equation (16) suggests a four-component wavefunction to 
describe both electrons and positrons: 2 components for electrons, 2 
components for positrons.

 Indeed, intrinsic parities of e- and e+ are related, namely:
Pe+Pe- = 1–

This is true for all the fermions (spin-1/2 particles), i.e.,
PfPf

1–= (60)

Experimentally this can be confirmed by studying the reaction e+e-  
where initial state has zero orbital momentum and parity of Pe- Pe+

 If the final state has relative orbital angular momentum l its parity is P
2

1– 
l
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 P
2

1=Since , from the parity conservation law stems that Pe- Pe+ 1– 
l=

Experimental measurements of lconfirm (60)

While (60) can be proven in experiments, it is impossible to determine 
Pe-  or Pe+ , since these particles are created or destroyed only in pairs.

 Conventionally defined parities of leptons are:
P

e- P
- P

-= = 1 (61)

And consequently, parities of antileptons have opposite sign.

 Since quarks and antiquarks are also produced only in pairs, their parities are 
defined also by convention:

Pu Pd Ps Pc Pb Pt 1= = = = = = (62)

with parities of antiquarks being -1.
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For a meson M=(ab), parity is then calculated as

PM PaP
b

1– L 1– L 1+= = (63)

 For the low-lying mesons (L=0) this implies parity of -1, which is confirmed by 
observations

For a baryon B=(abc), parity is given as

PB PaPbPc 1– 
L12 1– 

L3 1– 
L12 L3+

= = (64)

and for antibaryon P
B

PB–= , similarly to the case of leptons.

 For the low-lying baryons with L12=L3=0, (64) predicts positive parities, which is 
also confirmed by experiment.

Parity of the photon can be deduced from the classical field theory, 
considering Poisson’s equation:

                                            E x t  1
0
----- x t =
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Under a parity transformation, charge density changes as 

 x t   x t–   and  changes its sign, so that to keep the equation 
invariant, the electric field must transform as

E x t  E x t– – (65)

The electromagnetic field is described by the vector and scalar potentials:

E –
A
t
------–= (66)

For photons, only the vector part corresponds to the wavefunction:

A x t  N k ei kx Et– =

Under parity transformation: A x t  PA x– t  , and from (65) follows

E x t  PE x t–  . (67)

Comparing (67) and (65), one concludes that parity of photon is P 1–=
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Charge conjugation

 Charge conjugation replaces particles by their antiparticles, reversing 
charges and magnetic moments 

 Charge conjugation is violated in weak interactions

 Absolute sign of the electric charge can actually be defined

For strong and electromagnetic interactions, charge conjugation is a 
symmetry:

Ĉ H  0=

 It is convenient now to denote a state in a compact notation, using Dirac’s “ket” 

representation: + p   denotes a pion having momentum p , or, in general case,

+1 -2;  +1  -2  (68)

Next, we denote particles which have distinct antiparticles with “a” , and otherwise 
– with “”
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In such notations, we describe the action of the charge conjugation 
operator upon particles of kind “” as:

Ĉ    C   = (69)

meaning that the final state acquires a phase factor C, and for “a” as:

Ĉ a   a  = (70)

meaning that from a particle in the initial state we came to the antiparticle 
in the final state.

Since the consequtive transformation turns antiparticles back to particles, 

Ĉ2 1=  and hence
C 1= (71)

For multiparticle states the transformation is:

Ĉ 1 2  a1 a2  ;      C1
C2

 1 2  a1 a2  ;     = (72)
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 From (69) follows that particles =,0,... are eigenstates of Ĉ  with 
eigenvalues C=1. 

 Other eigenstates can be constructed from particle-antiparticle pairs:

Ĉ a 1 a 2;  a 1 a2;  a 1 a 2; = =

 For a state of definite orbital angular momentum, interchanging between particle 
and antiparticle reverses their relative position vector, for example:

Ĉ +- L;  1– L +- L; = (73)

 For fermion-antifermion pairs theory predicts

Ĉ ff J L S ;  1– L S+
ff J L S ; = (74)

This implies that e.g. a neutral pion 0, being a 1S0 state of uu and dd, 
must have C-parity of 1.
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Tests of C-invariance

 Prediction of C
0 1=  can be confirmed experimentally by observing 

the decay 0 . 

The final state has C=1, and from the relations

Ĉ 0 =C
0 

0 

Ĉ  =CC  =  

follows that C
0 1= . 

 C can be inferred from the classical field theory:

A x t  CA x t 

under the charge conjugation, and since all electric charges swap, 
electric field and scalar potential also change sign:



E x t  E x t  ,  x t   x t ––
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Upon substitution into (66) this gives C 1–= .

 To check predictions of the C-invariance and of the value of C, one 
can try to look for the decay

0   + +

 If predictions for Cand C0  are true, this mode should be forbidden:

Ĉ   C 3    –= =

contradicts all previous observations. Indeed, experimentally, this 3
mode has never been observed.

 Symmetry requirements and corresponding conservation laws explain 
why certain particle decays are never observed – forbidden
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Another confirmation of C-invariance comes from observation of 
-meson decays:

  +

 0 0 0+ +

 + - 0+ +

 They are electromagnetic decays, and first two clearly indicate that C=1. 
Identical charged pions momenta distribution in the last confirms C-invariance.
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