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From Linear to Non-Linear solution

So far, our approach to beam dynamics was to use the electromag-
netic Hamiltonian with the correct magnetic and electric field for
the element that we want to simulate. Then expand the Hamil-
tonian to the second order to benefit of the linear solution. In
equations we summarize it as:

H =
δ

β0
−

√(
δ +

1

β0
− qcφ

cp0

)2

− (px − ax)2 − (py − ay)2 −
1

β2
0γ

2
0

− az

H2 = Taylor(H, 2) +���O(3)
d~v

ds
= S~∇TH ≈ S~∇TH2 = SW~v

~vL = eLSW~v0

we now want to explore the possibility to solve the Hamilton
equations without using the Taylor expansion truncated at the
order 2.
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The Lie operator also known as Poisson Bracket

Given the two functions f(~q, ~p), g(~q, ~p) we define the Poisson
Bracket [2] of f and g as

{f, g} =

n∑
i=1

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
(1)

Then we will define the Lie operator such as the "waiting" Poisson
Bracket as

: f :=

n∑
i=1

(
∂f

∂qi

∂

∂pi
− ∂f

∂pi

∂

∂qi

)
(2)

such as
: f : g = {f, g}. (3)

This notation and everything about the Lie operator as well as
the following Lie transform is addressed in [1]. The theory used
here is also discussed in Chapter 9 of [3].
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Exercise: Hamilton’s equations from Lie operator

Verify that the equations of Hamilton are

q̇i = − : H : qi (4)

ṗi = − : H : pi (5)
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Time derivative

The Hamilton equations are only a special case of the application
of the Lie operator used with the Hamiltonian. If we have a
function f(~q, ~p) then, recalling that ~q and ~p are functions of t we
can calculate its time derivative applying the chain rule

df

dt
=

n∑
i=1

(
∂f

∂qi
q̇i +

∂f

∂pi
ṗi

)

=

n∑
i=1

(
∂f

∂qi

∂H

∂pi
− ∂f

∂pi

∂H

∂qi

)
= − : H : f. (6)
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Time derivative

The consequence of Eq. (6) is the possibility to calculate the
higher order time derivatives of q and p as

dn

dtn
qi = − : H :

dn−1

dtn−1
qi = (−1)n : H :n qi (7)

dn

dtn
pi = − : H :

dn−1

dtn−1
pi = (−1)n : H :n pi (8)

where we defined the power of the Lie operator as the iterations
: H :2 f =: H : (: H : f). Now we have all the ingredients for our
non-linear theory.
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The non-linear solution

Let say that we found the solution ~v(t) of the Hamilton equations

d~v

dt
= S~∇TH (9)

we can always express this solution as the Taylor expansion in
time

~v(t) = ~v(0) + t
d~v

dt

∣∣∣∣
t=0

+
t2

2

d2~v

dt2

∣∣∣∣
t=0

. . . (10)

and applying the Eqs. (7,8) to every coordinates of ~v we have

~v(t) = ~v(0)− t (: H : ~v)t=0 +
t2

2

(
: H :2 ~v

)
t=0

. . .

~v(t) = e−t:H:~v(0). (11)
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The Lie transform

The differential operator e:f : is called the Lie transform through f ,
so in our case we are doing the Hamiltonian Lie transform of the
initial vector in order to obtain the dynamics. The solution (11)
is only formal because it does not exist an easy way to calculate
the exponential of the Lie operator and the Taylor series of the
exponential has to be evaluated truncating the series.
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Exercise: the drift space with Lie transform

Even if in general the solution (11) requires to truncate the series,
this is not always the case. To see this calculate the one dimen-
sional dynamics of a particle through a classical drift space with
Hamiltonian

H =
p2

2m
(12)

and with the relativistic Hamiltonian

H =
√
p2c2 +m2c4. (13)

Finally, calculate the full 6D drift space using the electromagnetic
Hamiltonian when ~a = 0 and φ = 0

H =
δ

β0
−

√(
δ +

1

β0

)2

− p2x − p2y −
1

β20γ
2
0

. (14)
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Beam transport

In the linear dynamic we were able to transport not only a single
particle, but also some statistical function of the beam such as
the RMS. Can we do something similar with the formalism of
Lie transform? The short answer is yes. We have the following
equalities

f(e−t:H:~v(0)) = f(~v(t)) = e−t:H:f(~v(0)) (15)

where the first is due to the Eq. (11) while the second is the
combination of Eq. (11) with the Eq. (6). This also means that
the following property

e−t:H:f(~v) = f(e−t:H:~v). (16)

holds for any solution ~v of the Hamilton’s equations.
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Beam transport

Now let us consider a curve defined on the initial phase space, for
example we can evaluate the ellipse around the initial beam

ξ(x, px) = γx2 + 2αxpx + βp2x − πε = 0. (17)

If we want to know how this curve appears in the transformed
space we have to consider that the new canonical coordinates will
be transformed according to

xnew = e−t:H:x; pxnew = e−t:H:px (18)

that means

x = et:H:xnew; px = et:H:pxnew (19)

where we used the property e:f :e−:f : = 1.
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Beam transport

Then ξ(x, px) can be written as

ξ(x, px) = ξ
(
et:H:xnew, e

t:H:pxnew
)

(20)

but we know, from the Eq. (16) that

ξ
(
et:H:xnew, e

t:H:pxnew
)

= et:H:ξ(xnew, pxnew) (21)

and this means that to evaluate the ellipse on the new space we
have to evaluate the function

et:H:ξ(xnew, pxnew) = 0. (22)
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Summary Scheme

Define an Hamiltonian

Is quadratic (or Taylor expanded)

M(t) = etSW

Single-particle dynamics:
~v(t) = M(t)v0

Multi-particle dynamics:
Σt = MΣ0M

T

Is not quadratic

Transfer map e−t:H:

Single-particle dynamics:
~v(t) = e−t:H:v0

Multi-particle dynamics:
f(~v) = et:H:f(~v0).
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Computational Exercise: quadrupole with Lie transform

Considering the 1D Hamiltonian for a quadrupole

H =
p2x
2

+ k2
x2

2
(23)

generate 10000 random particles in one dimension (x, px) with
0 ≤ x ≤ 5e− 3 m and 0 ≤ px ≤ 5e− 6 and transport them with
a quadrupole of length L = 1 m and k=0.05 T/m using the Lie
transform tecnique truncating the series at the order 20.

Calculate the Twiss parameters α, β, γ, the emittance, and trans-
port the ellipse

γx2 + 2αxpx + βp2x − 1.5πε = 0 (24)

using the Lie transform.
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Solutions

Solutions to proposed exercises.
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Solution: Hamilton’s equations from Lie operator

Verify that the equations of Hamilton are

q̇i = − : H : qi (25)

ṗi = − : H : pi (26)
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Solution: Hamilton’s equations from Lie operator

The solution is immediate applying the definition of Lie operator

: H : qi =

n∑
i=1

(
∂H

∂qi

∂

∂pi
− ∂H

∂pi

∂

∂qi

)
qi (27)

: H : pi =

n∑
i=1

(
∂H

∂qi

∂

∂pi
− ∂H

∂pi

∂

∂qi

)
pi (28)

and recalling that the qi and pi variables are all independent, so
the cross detivatives are all zero. Then the result is

: H : qi = − ∂H

∂pi
(29)

: H : pi =
∂H

∂qi
(30)

that are exactly the Hamilton equations with the flipped sign and
this justify the minus sign.
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Solution: the drift space with Lie transform

Even if in general the solution (11) requires to truncate the series,
this is not always the case. To see this calculate the one dimen-
sional dynamics of a particle through a classical drift space with
Hamiltonian

H =
p2

2m
(31)

and with the relativistic Hamiltonian

H =
√
p2c2 +m2c4. (32)

Finally, calculate the full 6D drift space using the electromagnetic
Hamiltonian when ~a = 0 and φ = 0

H =
δ

β0
−

√(
δ +

1

β0

)2

− p2x − p2y −
1

β20γ
2
0

. (33)
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Solution: the drift space with Lie transform

First the classical case. We start noticing that

: H : q =:
p2

2m
: q =

∂ p2

2m

∂q

∂q

∂p
−
∂ p2

2m

∂p

∂q

∂q
= − p

m
(34)

and as consequence

: H :2 q =: H : − p

m
= 0 (35)

which means that only the first term of the exponential is different
from zero, all the other terms are zero and we do not have to
truncate. For the same argument of Eq. (35) we have for the
momentum

: H : p = 0. (36)
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Solution: the drift space with Lie transform

We can calculate the equations of motion now

q(t) = e−t:H:q
∣∣
t=0

= q0 + t
p0
m

(37)

p(t) = e−t:H:p
∣∣
t=0

= p0 (38)

where q0 = q(0) and p0 = p(0). The result is the same as the
exercise in the first lecture as expected for the classical particle.
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Solution: the drift space with Lie transform

For the relativistic Hamiltonian we apply the same method

: H : q = :
√
p2c2 +m2c4 : q

=
∂
√
p2c2 +m2c4

∂q

∂q

∂p
− ∂

√
p2c2 +m2c4

∂p

∂q

∂q

= − pc√
p2 +m2c2

(39)

and again we can see that if we iterate : H :2 q we obtain zero,
as well as for : H : p = 0. Them the equations of motion are

q(t) = e−t:H:q
∣∣
t=0

= q0 + t
p0
γm

(40)

p(t) = e−t:H:p
∣∣
t=0

= p0 (41)

using the definition of momentum p = γβmc and γ2 − 1 = γ2β2.
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Solution: the drift space with Lie transform

And now for the complicate one. From the previous two cases we
learned that when we iterate the Lie operator of an Hamiltonian
that depends only by the momentum on the position variable we
eventually obtain zero. Moreover, we saw that when we apply the
same operator to the momentum we obtain zero. So, we know
already

px(L) = px0; py(L) = py0; δ(L) = δ0 (42)

and for the positions we will have

x(L) = x0 − L : H : x (43)

y(L) = y0 − L : H : y (44)

z(L) = z0 − L : H : z (45)
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Solution: the drift space with Lie transform

If we call

d =

√(
δ +

1

β0

)2

− p2x − p2y −
1

β20γ
2
0

(46)

then we have

x(L) = x0 + L
px0
d

(47)

y(L) = y0 + L
py0
d

(48)

z(L) = z0 +
L

β0

(
1− 1

d

)
− Lδ0

d
. (49)

It is remarkable to see that not even the simplest element of a
particle accelerator is linear!
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Solution: the drift space with Lie transform

The motion in the three directions depends on d that is a non-
linear function of the initial conditions. In particular there is a
dependency from the energy offset δ. Such a dependency is called
chromaticity of the beam.

In accelerator physics literature, a particle accelerator is frequently
seen as an optical system like a set of lenses. This is due to the
fact that quadrupolar magnets act in a similar way as a focusing
or defocusing lens. But we have to keep in mind that the nature
of particles and the one of the light is fundamentally different.
The light is massless, and its speed in vacuum is a constant for
any color (any energy). A particle beam has an energy spread
that produces a velocity spread, and even in the empty space we
see a chromatic aberration where particle with different energies
travel different lengths in the same time. 24



Solution: quadrupole with Lie transform

Considering the 1D Hamiltonian for a quadrupole

H =
p2x
2

+ k2
x2

2
(50)

generate 10000 random particles in one dimension (x, px) with
0 ≤ x ≤ 5e− 3 m and 0 ≤ px ≤ 5e− 6 and transport them with
a quadrupole of length L = 1 m and k=0.05 T/m using the Lie
transform tecnique truncating the series at the order 20.

Calculate the Twiss parameters α, β, γ, the emittance, and trans-
port the ellipse

γx2 + 2αxpx + βp2x − 1.5πε = 0 (51)

using the Lie transform.
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Solution: quadrupole with Lie transform

We first generate the particles, calculate the standard deviations
and the Twiss functions

1 x_array = random . normal ( 0 . 0 , 5e−3, s i z e =10000)
2 px_array = random . normal (0 , 5e−6, s i z e =10000)
3

4 sigma_x = x_array . std ( ) ∗∗2
5 sigma_px = px_array . std ( ) ∗∗2
6 sigma_xpx = sum( ( x_array−x_array . mean ( ) ) ∗( px_array−

px_array . mean ( ) ) ) / l en ( x_array )
7 sigma_x , sigma_xpx , sigma_px
8

9 emit = numpy . sq r t ( sigma_x∗sigma_px−sigma_xpx ∗∗2)
10 alpha = −sigma_xpx/emit
11 beta = sigma_x/emit
12 gamma = sigma_px/emit
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Solution: quadrupole with Lie transform

then we define the ellipse

1 x_e l l i p s e = numpy . l i n s p a c e ( x_array . min ( ) , x_array .max( )
, 1000)

2 p_e l l i p s e = numpy . l i n s p a c e ( px_array . min ( ) , px_array .max
( ) , 1000)

3 x_e l l ip se , p_e l l i p s e = numpy . meshgrid ( x_e l l ip s e ,
p_e l l i p s e )

4 e l l i p s e = gamma∗ x_e l l i p s e ∗∗2+2∗alpha ∗ x_e l l i p s e ∗
p_e l l i p s e+beta ∗ p_e l l i p s e ∗∗2−1.5∗numpy . p i ∗ emit
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Solution: quadrupole with Lie transform

and we plot

1 p l t . t i ck labe l_fo rmat ( s t y l e=’ s c i ’ , a x i s=’ x ’ , s c i l i m i t s
=(0 ,0) )

2 p l t . t i ck labe l_fo rmat ( s t y l e=’ s c i ’ , a x i s=’ y ’ , s c i l i m i t s
=(0 ,0) )

3 p l t . x l ab e l ( ’ $x$ [mm] ’ )
4 p l t . y l ab e l ( ’ $p_x$ [ $\mu$rad ] ’ )
5 p l t . s c a t t e r ( x_array , px_array , s=3, f a c e c o l o r=’b ’ )
6 p l t . xl im (1 . 1∗ x_array . min ( ) , 1 . 1∗ x_array .max( ) )
7 p l t . yl im (1 . 1∗ px_array . min ( ) , 1 . 1∗ px_array .max( ) )
8 p l t . contour ( x_e l l ip s e , p_e l l ip se , e l l i p s e , [ 0 ] ,

l i n ew id th s=4 , c o l o r s=’ r ’ )
9 p l t . show ( )
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Solution: quadrupole with Lie transform

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5
x [mm] 1e 2

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

p x
 [

ra
d]

1e 5
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Solution: quadrupole with Lie transform

We create the symbolic calculator for the Lie transform

1 import sympy
2 x , p = sympy . symbols ( ’ x , p_x ’ , r e a l=True )
3 de f l i e_ope ra to r ( f , g ) :
4 re turn f . d i f f ( x ) ∗g . d i f f (p )−f . d i f f (p ) ∗g . d i f f ( x )
5 de f l i e_trans fo rm ( f , g , order ) :
6 s tep = l i e_ope ra to r ( f , g )
7 r e s u l t = g + step
8 f o r i in range (2 , order +1 ,1) :
9 s tep = sympy . s imp l i f y ( l i e_ope ra to r ( f , s t ep ) )

10 r e s u l t = sympy . s imp l i f y ( r e s u l t + step /sympy .
f a c t o r i a l ( i ) )

11 re turn r e s u l t
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Solution: quadrupole with Lie transform

Now we are ready to transform our beam. We generate the Hamil-
tonian, transport with the Lie transform and transform it in a
numeric function with lambdify.

1 L = 1.0
2 k = 0.05
3 H = (p∗∗2/2+k∗∗2∗x∗∗2/2)
4 order=20
5 xf = sympy . lambdify ( ( x , p) , l i e_trans fo rm(−L∗H, x , order ) )
6 pf = sympy . lambdify ( ( x , p) , l i e_trans fo rm(−L∗H, p , order ) )
7

8 new_x_array = xf ( x_array , px_array )
9 new_px_array = pf ( x_array , px_array )
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Solution: quadrupole with Lie transform

In the same way we transport the ellipse.

1 x_e l l i p s e = numpy . l i n s p a c e (new_x_array . min ( ) ,
new_x_array .max( ) , 1000)

2 p_e l l i p s e = numpy . l i n s p a c e ( new_px_array . min ( ) ,
new_px_array .max( ) , 1000)

3 x_e l l ip se , p_e l l i p s e = numpy . meshgrid ( x_e l l ip s e ,
p_e l l i p s e )

4 e l l ipse_sym = sympy . lambdify ( ( x , p) , l i e_trans fo rm (L∗H,
gamma∗x∗∗2+2∗alpha ∗x∗p+beta ∗p∗∗2−1.5∗numpy . p i ∗emit ,
order ) , numpy)

5 e l l i p s e=el l ipse_sym ( x_e l l ip se , p_e l l i p s e )
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Solution: quadrupole with Lie transform

And finally we plot the result.

1 p l t . t i ck labe l_fo rmat ( s t y l e=’ s c i ’ , a x i s=’ x ’ , s c i l i m i t s
=(0 ,0) )

2 p l t . t i ck labe l_fo rmat ( s t y l e=’ s c i ’ , a x i s=’ y ’ , s c i l i m i t s
=(0 ,0) )

3 p l t . x l ab e l ( ’ $x$ [mm] ’ )
4 p l t . y l ab e l ( ’ $p_x$ [ $\mu$rad ] ’ )
5 p l t . s c a t t e r (new_x_array , new_px_array , s=3, f a c e c o l o r=’b

’ )
6 p l t . xl im (1 . 1∗ new_x_array . min ( ) , 1 . 1∗ new_x_array .max( ) )
7 p l t . yl im (1 . 1∗ new_px_array . min ( ) , 1 . 1∗ new_px_array .max( ) )
8 p l t . contour ( x_e l l ip s e , p_e l l ip se , e l l i p s e , [ 0 ] ,

l i n ew id th s=3 , c o l o r s=’ r ’ )
9 p l t . show ( )
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Solution: quadrupole with Lie transform

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5
x [mm] 1e 2

4

2

0

2

4

p x
 [

ra
d]

1e 5
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