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Lost of Symplecticity

When the Hamiltonian is not quadratic, therefore the solution
is non-linear, we proposed a general solution based on the Lie
transform. The transfer map can be written as

e−t:H: =

∞∑
n=0

(−t)n

n!
(: H :)n (1)

and it is not in general possible to calculate it exactly. More-
over, the series expands in power of t and not as a power of the
coordinates and momenta, so our expansion can be a problem
because we do not have the full control of the error that we are
introducing with respect to the distance of the particle from the
synchronous particle.
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Lost of Symplecticity

But the real physical problem is that the approximation of the Eq.
(1) destroys the symplecticity. The effect is that the phase space
can inflate or shrink artificially showing a variation of energy in
the beam that does not correspond to the physical reality. The
more non-linear elements we cross the worst can be the effect of
the approximation. Is there a way to restore the symplecticity?
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A useful property of Lie transform

Let say for one moment that our Hamiltonian is a function only
of one of the two canonical variables

H = H(px) (2)

then when used as Lie operator on the canonical variables we see

: H : x =
�
��
∂H

∂x �
�
�∂x

∂px
− ∂H

∂px

∂x

∂x
= −∂H

∂px
(3)

: H : px =
�
��
∂H

∂x

∂px
∂px
− ∂H

∂px �
��
∂px
∂x

= 0 (4)

where the cancelled terms are the derivatives equal to zero.
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A useful property of Lie transform

The quantity − ∂H
∂px

is only function of px, so if we now iterate the
Lie operator we obtain

(: H :)2x = : H :

(
−∂H
∂px

)
=

�
��
∂H

∂x

∂

∂px

(
−∂H
∂px

)
− ∂H

∂px���
����∂

∂x

(
−∂H
∂px

)
= 0 (5)

This is an interesting result: if the Hamiltonian is a function only
of one canonical variable we can fully calculate the Lie transform
of the coordinates and momenta because the orders higher than
the second are all zero. Because of the symmetry of the Hamilton
equations the property is valid also if H is just a function of x,
we have only to swap equations (and sign!).
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A useful property of Lie transform

To summarize we discovered that when H = Hx is a function
only of x we have

e:Hx:x = x (6)

e:Hx:px = px +
∂Hx

∂x
(7)

while when Hpx is a function only of px we have

e:Hpx :x = x− ∂Hpx

∂px
(8)

e:Hpx :px = px (9)
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Exercise: Lie operator iteration of single variable function

If f(x) is a function only of x and g(px) is a function only of px
prove that

(: Hx :)nf(x) = 0 (10)

(: Hx :)ng(px) =

(
∂Hx

∂x

)n ∂ng(px)

∂pnx
(11)

(: Hpx :)nf(x) = (−1)n
(
∂Hpx

∂px

)n ∂nf(x)

∂xn
(12)

(: Hpx :)ng(px) = 0 (13)

7



A useful property of Lie transform

The final step that we need to learn is how to calculate the iter-
ation of one Hamiltonian in one variable on the Hamiltonian in
the other variable.

e:Hpx :e:Hx:x = e:Hpx :x = x− ∂Hpx

∂px
(14)

e:Hpx :e:Hx:px = e:Hpx :

(
px +

∂Hx

∂x

)
= px + e:Hpx :

(
∂Hx

∂x

)
. (15)

A similar result is valid also if we invert the order of the Lie
transforms. The Eq. (15) is in the same form of the Eq. (12) and
if Hx vanish after a certain number of derivatives (for example if
Hx is polynomial), both the Eqs. (14) and (15) are finite and we
can calculate them exactly.

8



Restoring Symplecticity

The discussion we did so far is very interesting because the Hamil-
tonian is in general written as the sum of two components H =

T + V where the kinetic component T is a function only of the
momenta, while the potential V is generally only function of the
positions.

Now let us return to our equations of dynamics

~v(t) = e−t:H:v0 = e−t:T+V :v0
?
= e−t:T :e−t:V :v0. (16)

If the last equality is valid and if the nth derivative of T and V
vanish, then we have a formula to calculate our dynamics without
truncating the series, in other words symplectic!

9



Restoring Symplecticity

Unfortunately, the life of the physicist is never easy and the equa-
tion

e−t:T+V : ?
= e−t:T :e−t:V : (17)

is not valid. The right way to split the sum in the operator is
using the Zassenhaus formula that is the dual application of the
more famous Backer-Campbell-Hausdorff formula (see Chapter
10.1 [2])

e−t:T+V : = e−t:T :e−t:V :e
t2

2
:{T,V }:e−

t3

3
:{V,{T,V }}:e−

t3

6
:{T,{T,V }}: . . .(18)

where the brackets {T, V } are the Poisson brackets.
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Exercise: second order integrator

Considering the Zassenhaus formula at the second order

e−t:T+V : ≈ e−t:T :e−t:V :e
t2

2
:{T,V }: (19)

show that if the Hamiltonian is split as 1
2T + V + 1

2T the second
order cancels and the equation becomes

e−t:
1
2
T+V+ 1

2
T : ≈ e−t:

1
2
T :e−t:V :e−t:

1
2
T :. (20)

Hints: the Poisson Brackets satisfy the following rules

{A+B,C} = {A,C}+ {B,C} (21)

{A,B + C} = {A,B}+ {A,C} (22)

{k1A, k2B} = k1k2{A,B} (23)

{A,A} = 0 (24)

{A,B} = −{B,A} (25)
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The Physical meaning

The equation (20) tells us that if we write the Hamiltonian as
T + V or if we write it as 1

2T + V + 1
2T we have, of course, the

same Hamiltonian, but a better approximation for the Zassenhaus
formula because the second way cancels the second order terms
of the formula. What is the physical meaning of this different
way to write the Hamiltonian? We have to think that we are not
splitting a simple function, but we are splitting the transforma-
tion through a purely kinetic element T , and a purely potential
term V . The kinetic term is a drift (empty space with no forces)
while the potential is an instantaneous kick where all the force of
the element is "condensed".
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The Physical meaning

Graphically we can see it as

:

: :

Part of the CERN triplet designed by KEK and Fermilab
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The Physical meaning

The technique to split the Hamiltonian in order to cancel the
terms of the Zassenhaus formula is called Symplectic integration.
We are tempted to think that the symmetry (kick in the middle
point) is the reason why 1

2T + V + 1
2T approximates better the

dynamics compared to the T + V . If this is true for the second
order, this is not true for the higher orders. If we place other
two kicks in the middle of the drifts, this does not cancel the
third order (t3) in the Zassenhaus formula. In other words, the
approximation in the figure is wrong.
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The Yoshida Symplectic Integrator

The correct split that cancels the second, third and fourth, order
terms in t in the Zassenhaus formula is

H = d1T + c1V + d2T + c2V + d2T + c1V + d1T (26)

where the coefficients are

d1 =
1

12

(
4 + 2

3
√
2 +

3
√
4
)
≈ 0.6756 (27)

d2 =
1

2
− d1 ≈ −0.1756 (28)

c1 = 2d1 ≈ 1.3512 (29)

c2 = 1− 4d1 ≈ −1.7024 (30)

It is interesting to notice that the drift d2 is negative. This cor-
responds to a kick applied backward and is not at all intuitive as
a result.
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The Yoshida Symplectic Integrator

The coefficients (27-30) were calculated for the first time in [1];
the idea was to insert the Hamiltonian (26) into the Zassehaus
formula in order to impose to the coefficients to cancel the high
order terms. This technique can easily become very difficult to
be extended because the calculations to perform for higher orders
increase exponentially, so it is not possible to apply it for higher
orders.

Luckily for us, Haruo Yoshida [3] finds a method to extend the
symplectic integrators to any even order of the Zassenhaus for-
mula.
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The Yoshida Symplectic Integrator

We will not prove here the Yoshida technique that is well de-
scribed in the paper, but we will say that it exploits the time
reversal symmetry of the BCH formula. This generates a symme-
try in the solution such that if a symmetric integrator of order 2n,
S2n(t), is already known, a (2n+2)th order integrator is obtained
as

S2n+2(t) = S2n(z1t)S2n(z0t)S2n(z1t) (31)

where z0 and z1 are solutions of

z0 + 2z1 = 1; z2n+1
0 + 2z2n+1

1 = 0 (32)

or

z0 = −
21/(2n+1)

2− 21/(2n+1)
; z1 =

1

2− 21/(2n+1)
. (33)

Where n = 1 for fourth order, n = 2 for sixth order and so on.
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Exercise: fourth order symplectic integrator

Recalling that the second order integrator is

S2(t) = e−t
1
2
:T :e−t:V :e−t

1
2
:T : (34)

so with coefficients
[
1
2 , 1,

1
2

]
use the Yoshida method to calculate

the fourth order integrator and verify the result with the coeffi-
cients (27-30).
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Computational Exercise: the sextupole

Generate a 1D gaussian particle distribution in (x, px) with the
following characteristics:

N = 1e6 (35)

σx = 2.5e− 3 m (36)

σpx = 2.5e− 3. (37)

Calculate the Twiss functions α, β, γ and emittance. Plot the
beam distribution in the phase space and the ellipse with equation

γx2 + 2αxpx + βp2x − 4πε = 0. (38)
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Computational Exercise: the sextupole

Using the Hamiltonian of a sextupolar magnet given by

H =
p2x
2

+ ks
x3

6
(39)

with length L = 6 m and gradient ks = 1.0 T
m2 transport the

particles and the ellipse

• with the Lie transform truncated at the order 10;

• with the Yoshida integrator at the order 4;

for both cases plot the particles and the transported ellipse.
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Solutions

Solutions to proposed exercises.
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Solution: Lie operator iteration of single variable function

If f(x) is a function only of x and g(px) is a function only of px
prove that

(: Hx :)nf(x) = 0 (40)

(: Hx :)ng(px) =

(
∂Hx

∂x

)n ∂ng(px)

∂pnx
(41)

(: Hpx :)nf(x) = (−1)n
(
∂Hpx

∂px

)n ∂nf(x)

∂xn
(42)

(: Hpx :)ng(px) = 0 (43)
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Solution: Lie operator iteration of single variable function

We start calcualting

: Hx : f(x) =
∂Hx

∂x
�
�
��∂f(x)

∂px
−

�
�
�∂Hx

∂px

∂f(x)

∂x
= 0 (44)

: Hx : g(px) =
∂Hx

∂x

∂g(px)

∂px
−

�
�
�∂Hx

∂px �
�
��∂g(px)

∂x
(45)

: Hpx : f(x) =
�
�
�∂Hpx

∂x
�
�
��∂f(x)

∂px
− ∂Hpx

∂px

∂f(x)

∂x
(46)

: Hpx : g(px) =
�
�
�∂Hpx

∂x

∂g(px)

∂px
− ∂Hpx

∂px �
�

��∂g(px)

∂x
= 0 (47)
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Solution: Lie operator iteration of single variable function

The iterations of non-zero equations are

(: Hx :)2g(px) =
∂Hx

∂x

∂

∂px

(
∂Hx

∂x

∂g(px)

∂px

)
=

(
∂Hx

∂x

)2 ∂2g(px)

∂p2x
(48)

(: Hpx :)2f(x) = −∂Hpx

∂px

∂

∂x

(
−∂Hpx

∂px

∂f(x)

∂x

)
=

(
∂Hpx

∂px

)2 ∂2f(x)

∂x2
(49)
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Solution: Lie operator iteration of single variable function

It is then clear that

(: Hx :)nf(x) = 0 (50)

(: Hx :)ng(px) =

(
∂Hx

∂x

)n ∂ng(px)

∂pnx
(51)

(: Hpx :)nf(x) = (−1)n
(
∂Hpx

∂px

)n ∂nf(x)

∂xn
(52)

(: Hpx :)ng(px) = 0 (53)
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Solution: second order integrator

Considering the Zassenhaus formula at the second order

e−t:T+V : ≈ e−t:T :e−t:V :e
t2

2
:{T,V }: (54)

show that if the Hamiltonian is split as 1
2T + V + 1

2T the second
order cancels and the equation becomes

e−t:
1
2
T+V+ 1

2
T : ≈ e−t:

1
2
T :e−t:V :e−t:

1
2
T :. (55)

Hints: the Poisson Brackets satisfy the following rules

{A+B,C} = {A,C}+ {B,C} (56)

{A,B + C} = {A,B}+ {A,C} (57)

{k1A, k2B} = k1k2{A,B} (58)

{A,A} = 0 (59)

{A,B} = −{B,A} (60)
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Solution: second order integrator

We apply the Zassenhaus formula

e−t:
1
2
T+V+ 1

2
T : = e−t:

1
2
T+(V+ 1

2
T):

= e−t:
1
2
T :e−t:V+ 1

2
T :e

t2

2
:{ 1

2
T,V+ 1

2
T}:

= e−t:
1
2
T :e−t:V :e−t:

1
2
T :

e
t2

2
:{V, 1

2
T}:e

t2

2 (:{
1
2
T,V }:+:{ 1

2
T, 1

2
T}:) (61)

the properties of the Poisson brackets tell us that {12T,
1
2T} = 0

and {12T, V } = −{V,
1
2T} so

e
t2

2
:{V, 1

2
T}:e

t2

2 (:{
1
2
T,V }:+:{ 1

2
T, 1

2
T}:)

= e
t2

2
:{V, 1

2
T}:e−

t2

2
:{V, 1

2
T}: = 1.

27



Solution: fourth order symplectic integrator

Recalling that the second order integrator is

S2(t) = e−t
1
2
:T :e−t:V :e−t

1
2
:T : (62)

so with coefficients [12 , 1,
1
2 ] use the Yoshida method to calculate

the fourth order integrator and verify the result with the coeffi-
cients (27-30).
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Solution: fourth order symplectic integrator

First of all we calculate the z0 and z1 for order 4, i.e. n = 1.

z0 = − 21/(2n+1)

2− 21/(2n+1)
= − 21/3

2− 21/3
= −1.702414 (63)

z1 =
1

2− 21/(2n+1)
=

1

2− 21/3
= 1.3512. (64)

Then the 4th order integrator has coefficients

z1

[
1

2
, 1,

1

2

]
, z0

[
1

2
, 1,

1

2

]
, z1

[
1

2
, 1,

1

2

]
(65)

these are 9 coefficients, but the last coefficient of the first series is
a drift that is joint with the first coefficient of the second series,
so we can sum them[z1

2
, z1,

z1
2

+
z0
2
, z0,

z0
2

+
z1
2
, z1,

z1
2

]
= (66)

[0.6756, 1.3512,−0.1756,−1.702414,−0.1756, 1.3512, 0.6756] .
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Solution: the sextupole

Generate a 1D gaussian particle distribution in (x, px) with the
following characteristics:

N = 1e6 (67)

σx = 2.5e− 3 m (68)

σpx = 2.5e− 3. (69)

Calculate the Twiss functions α, β, γ and emittance. Plot the
beam distribution in the phase space and the ellipse with equation

γx2 + 2αxpx + βp2x − 4πε = 0. (70)
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Solution: the sextupole

Using the Hamiltonian of a sextupolar magnet given by

H =
p2x
2

+ ks
x3

6
(71)

with length L = 6 m and gradient ks = 1.0 T
m2 transport the

particles and the ellipse

• with the Lie transform truncated at the order 10;

• with the Yoshida integrator at the order 4;

for both cases plot the particles and the transported ellipse.
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Solution: the sextupole

Define beam, Twiss functions and ellipse.
1 sx = 2 .5 e−3
2 sp = 2 .5 e−3
3 N = 1000000
4 x i = numpy . random . normal (0 , sx ,N)
5 pi = numpy . random . normal (0 , sp ,N)
6 sx=(x i . s td ( ) ) ∗∗2
7 sp=(p i . s td ( ) ) ∗∗2
8 x_lim = max( abs ( x i . min ( ) ) , x i .max( ) )
9 p_lim = max( abs ( p i . min ( ) ) , p i .max( ) )

10 sxp=(( xi−x i . mean ( ) ) ∗( pi−pi . mean ( ) ) ) . sum( ) /N
11 emit = numpy . sq r t ( sx∗sp−sxp ∗∗2)
12 alpha = −sxp/emit
13 beta = sx/emit
14 gamma = sp/emit
15 x_e l l i p s e = numpy . l i n s p a c e (−x_lim , x_lim , 1000)
16 p_e l l i p s e = numpy . l i n s p a c e (−p_lim , p_lim , 1000)
17 x_e l l ip s e , p_e l l i p s e = numpy . meshgrid ( x_e l l i p s e , p_e l l i p s e )
18 e l l i p s e = gamma∗ x_e l l i p s e ∗∗2+2∗alpha ∗ x_e l l i p s e ∗ p_e l l i p s e+

beta ∗ p_e l l i p s e ∗∗2−4∗numpy . p i ∗ emit 32



Solution: the sextupole

This is how the beam and the ellipse appear.
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Solution: the sextupole

Create the Lie transform function.

1 x , p = sympy . symbols ( ’ x , p_x ’ , r e a l=True )
2 de f l i e_ope ra to r ( f , g ) :
3 r e turn f . d i f f ( x ) ∗g . d i f f (p )−f . d i f f (p ) ∗g . d i f f ( x )
4 de f l i e_trans fo rm ( f , g , order ) :
5 s tep = l i e_ope ra to r ( f , g )
6 r e s u l t = g + step
7 f o r i in range (2 , order +1 ,1) :
8 s tep = sympy . s imp l i f y ( l i e_ope ra to r ( f , s t ep ) )
9 r e s u l t = sympy . s imp l i f y ( r e s u l t + step /sympy .

f a c t o r i a l ( i ) )
10 r e turn r e s u l t
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Solution: the sextupole

Define the Hamiltonian and track the particles and the ellipse.
1 L = 6
2 ks = 1 .0
3 H = (p∗∗2/2+ks∗x∗∗3/6)
4 order=10
5 xf = sympy . lambdify ( ( x , p ) , l i e_trans fo rm(−L∗H, x , order ) )
6 pf = sympy . lambdify ( ( x , p ) , l i e_trans fo rm(−L∗H, p , order ) )
7 x_final_trunc = xf ( xi , p i )
8 p_final_trunc = pf ( xi , p i )
9 x_lim = max( abs ( x_final_trunc . min ( ) ) , x_final_trunc .max( ) )

10 p_lim = max( abs ( p_final_trunc . min ( ) ) , p_final_trunc .max( ) )
11 x_e l l i p s e = numpy . l i n s p a c e (−x_lim , x_lim , 1000)
12 p_e l l i p s e = numpy . l i n s p a c e (−p_lim , p_lim , 1000)
13 x_e l l ip s e , p_e l l i p s e = numpy . meshgrid ( x_e l l i p s e , p_e l l i p s e )
14 e l l ipse_sym = sympy . lambdify ( ( x , p ) , l i e_trans fo rm (L∗H,gamma∗

x∗∗2+2∗alpha ∗x∗p+beta ∗p∗∗2−4∗numpy . p i ∗emit , order ) , numpy
)

15 e l l i p s e=el l ipse_sym ( x_e l l ip s e , p_e l l i p s e )
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Solution: the sextupole

This is how the beam and the ellipse appear after the transport.
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Solution: the sextupole

Create the Lie transform function for exact solution

1 de f l i e_ope ra to r ( f , g ) :
2 r e turn f . d i f f ( x ) ∗g . d i f f (p )−f . d i f f (p ) ∗g . d i f f ( x )
3 de f l i e_trans fo rm ( f , g ) :
4 s tep = l i e_ope ra to r ( f , g )
5 r e s u l t = g + step
6 order = 2
7 whi le s tep != 0 :
8 s tep = sympy . s imp l i f y ( l i e_ope ra to r ( f , s t ep ) )
9 r e s u l t = sympy . s imp l i f y ( r e s u l t + step /sympy .

f a c t o r i a l ( order ) )
10 order = order + 1
11 r e turn r e s u l t
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Solution: the sextupole

Create Yoshida coefficients calculator.
1 de f symplect ic_integrator_numeric ( order ) :
2 i f order % 2 != 0 :
3 p r in t "This i n t e g r a t o r i s only f o r even order "
4 return
5 S = [ 0 . 5 , 1 , 0 . 5 ]
6 i f order > 2 :
7 f o r n in range (1 , i n t ( order /2) ) :
8 alpha = 2 . 0∗∗ ( 1 . 0 / ( 2 . 0∗ n+1) )
9 x0=−alpha /(2.0− alpha )

10 x1=1/(2.0− alpha )
11 TC=[ i ∗x0 f o r i in S ]
12 TL=[ i ∗x1 f o r i in S ]
13 T=[]
14 f o r i in TL[ : −1 ] :
15 T. append ( i )
16 T. append (TL[−1]+TC[ 0 ] )
17 f o r i in TC[1 : −1 ] :
18 T. append ( i )
19 T. append (TC[−1]+TL [ 0 ] )
20 f o r i in TL [ 1 : ] :
21 T. append ( i )
22 S=T
23 return S
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Solution: the sextupole

Prepare the two half Hamiltonians, calculate the coefficients and
set the intial particles.

1 Hd = p∗∗2/2
2 Hk = ks∗x∗∗3/6
3 order = 4
4 c o e f f = symplect ic_integrator_numer ic ( order )
5 x i n i t = x i
6 p i n i t = pi
7 counter = 0
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Solution: the sextupole

To the Lie transform for each coefficient of the integrator.
1 f o r i in c o e f f :
2 i f counter%2 == 0 :
3 Hd_numeric_x = sympy . lambdify ( ( x , p) , l i e_trans form(−L∗ i ∗Hd, x

) , numpy)
4 Hd_numeric_p = sympy . lambdify ( ( x , p) , l i e_trans form(−L∗ i ∗Hd, p

) , numpy)
5 e l l i p s e = l i e_trans form (L∗ i ∗Hd, e l l i p s e )
6 xf = Hd_numeric_x( x in i t , p i n i t )
7 pf = Hd_numeric_p( x in i t , p i n i t )
8 e l s e :
9 Hk_numeric_x = sympy . lambdify ( ( x , p) , l i e_trans form(−L∗ i ∗Hk, x

) , numpy)
10 Hk_numeric_p = sympy . lambdify ( ( x , p) , l i e_trans form(−L∗ i ∗Hk, p

) , numpy)
11 e l l i p s e = l i e_trans form (L∗ i ∗Hk, e l l i p s e )
12 xf = Hk_numeric_x( x in i t , p i n i t )
13 pf = Hk_numeric_p( x in i t , p i n i t )
14
15 x i n i t = xf
16 p i n i t = pf
17 counter = counter + 1
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Solution: the sextupole

Finalize the ellipse.

1 x_final_symp = xf
2 p_final_symp = pf
3 x_lim = max( abs ( x_final_symp . min ( ) ) , x_final_symp .max( ) )
4 p_lim = max( abs ( p_final_symp . min ( ) ) , p_final_symp .max( ) )
5 x_e l l i p s e = numpy . l i n s p a c e (−x_lim , x_lim , 1000)
6 p_e l l i p s e = numpy . l i n s p a c e (−p_lim , p_lim , 1000)
7 x_e l l ip s e , p_e l l i p s e = numpy . meshgrid ( x_e l l i p s e , p_e l l i p s e )
8 e l l ipse_sym = sympy . lambdify ( ( x , p ) , e l l i p s e , numpy)
9 e l l i p s e=el l ipse_sym ( x_e l l ip s e , p_e l l i p s e )
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Solution: the sextupole

This is how the beam and the ellipse appear after the transport
with the symplectic integrator.
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