FYST1/7 LECTURE 4
DETECTING AND IDENTIFYING
PARTICLES

Thanks to D. Bortoletto, M. Wielers, and P. Hobson




Today & next week:

- Reminders
- Cross section
- Rapidity \ pseudo-rapidity
- Bethe-Bloch ionization
- More about tracking and trackers
- Types, resolution
- More about calorimeters
- Types, resolution

- Some particle identification strategies

- Triggers



Detecting particles

Measurements depends on the available physics (given by the cross
section) and our ability to identify it

“Every effect of particles or radiation can be used as a working
principle for a particle detector” Claus Grupen

Goal of experiments: identifying (as many) particles (as possible) and
measure their 4-momentum

ALICE heavy-ion collision
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Reminder: Cross section

f int ti it ti t t Flux = number of
no of interactions per unit time per targe ! incident particles/ :
T cident flux e[ "I unit arealunit time
* The “cross section”, g, can be thought of as the effective cross-
sectional area of the target particles for the interaction to occur.

* In general this has nothing to do with the physical size of the
target although there are exceptions, e.g. neutron absorption

*— ’ here @ is the projective area of nucleus

Differential CI‘OSS Section T PR —

dG _— no of particles per sec/per target into dQ)
dQ) incident flux d_

dQ — d(COSG)d(p ..................................

with |0 = [ —dQ

[T PP _ dO
0 \ » | integrate over all
other particles




Reminder: Cross section

 Consider a single particle of type a with velocity, U , traversing a region of area

A containing 77, particles of type b per unit volume (Va + Vb)‘st
In time Ot a particle of type a traverses °
region containing 7,(Vy + vp)AOt A .
particles of type b o
o * Interaction probability obtained from effective
A ® cross-sectional area occupied by the
®0 np(va +vp)ASt  particles of type b
ny(ve +vp)AOto

* Interaction Probability = = npvoto [v=1vs+vp)

A
- Rate per particle of type a = 1,0 o

» Consider volume V/, total reaction rate = (n,v0).(n,V) = (n,V) (ngv) o

* As anticipated: | Rate =Flux x Number of targets x cross section




Rapidity

Rapidity y defined as:

y = LBt 1 (E+p)* 1, (E+p)
2 E—pz 2 (E+p)E—pz;) 2 m? +P§_
E+p; m
= In = |
m E—p;

Simple for calculations, Ay’ = Ay for simple boost along z-axis

BUT need to know m. Experimentally often unknown, instead use
pseudo-rapidity n

1 /mP 4 p2+p, 1 qpl e lpl e
y=lIn = n==In = In
2 m* + p* — pz 2 |p|—p: pL

1| p+ p cosb 1| 1+ cosf

Or n — — N — — = —n— onl
’ B_ E cos 2 L —cos0 dep»:endson
1 | 2cos® /2 cos /2 thzlp?lar
— 1IN = In — angle!
2 2sin%6)2 sinf/2

Not so simple, An’ #An |



transverse
direction

Example of use of n

Align beam direction with z axis ro lengitucia
The x-y plane is then transverse to the beam i
ie.: et

n (and y) — 0 when particle travels
transverse to beam ;

n (and y) — «© when moving along
beam axis

Important for accelerator physics:
y Lorentz invariant along beam axis!
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The pseudo-rapidity gap
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A . p. >500 MeV, |n|<25n_ =6 i
One can calculate that =° \s=7TeV )
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Bethe-Bloch formula for energy loss by
lonization

Valid for heavy charged particles (M, gent”>Me), €.9. proton, k, =, u

E 2
d ‘2nNare m,c }0 dl ( m,c @W - )=-2p —5(]3)/)—%
Fundamental constants
=0.1535 MeV cm?/g Ii i \ r.=classical radius of electron

m.,=mass of electron
N_=Avogadro’ s number

Absorber medium [c-speedofiight |
| = mean ionization potential Incident particle 1 &2
Z = atomic number of absorber || z = charge of incident particle Te = ATE. M
A = atomic weight of absorber || p = v/c of incident particle 0
p = density of absorber y = (1-p2)12
d = density correction W,..,= max. energy transfer
C = shell correction in one collision
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Bethe-Bloch formula

Low momentum: energy loss - I RO R4 O 1| O I A
decreases as ~ 1/, i3 PD 3
(slow particles feel the EM pull of atomic SE" Hp liquid =
electrons) “g 3 E
Reaches minimum =3 E
Then relativistic rise as By>4 to $°F i
plateau (Transv E field increases. % 2:_ = A —— ]
Density effects due to increased I

polarization/ shielding in medium)

A particle with dE/dx near the v e ® repie e e
minimum is called a minimum Rt e e e

Muon momentum (GeV/c)

ionizing particle — MIP

| IIIlIIII 1 IIIIIIll 1 IIIIIIll 1 Illlllll | llllllll

0.1 1.0 10 100 1,000

Notice that dE/dx in combination with 1 l Plon T°"‘°"'"'“ (GI°V/°) |

momentum measurement can be used for 0.1 1.0 10 100 1000 10,000
. Proton momentum (GeV/c)
particle ID!




Tracking

1 Particle detection has many aspects:

— Particle counting
— Particle Identification = measurement of mass and
charge of the particle
— Tracking
1 Charged particles are deflected by B fields:

By measuring the radius of curvature we can
determine the momentum of a particle

If we can measure also 3 independently we
can determine the particle mass.




Momentum and position resolutlon

(L72,y,)

Trajectory of
charged particle

(0, y4) (L. y3)
Assume: we measure y at 3 points in (x, y) plane (z=0) with precision c,and a
constant B field in z direction so p,=0.3Br.

) )

NtV L L _
2 8r 8p, /(0.3B)

S = 1 )

N3/ 20 .

(0.3I*B)/(8p,)




Tracking detectors

Many different implementations:

- Scintillators
- Organic/inorganic crystals, plastic scintillator,
- noble gases ...

- Photo detectors
- PMTs

- Gaseous detectors
- Wire chambers , drift chambers, time projection chambers

- Semiconductors
- Silicon ,strips or pixels
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Scintillator trackers

» dE/dx converted into light that is then detected with
photo-detectors
» Main features:
» Sensitivity to energy
» Fast time response
» Pulse shape discrimination
» Requirements:
» High efficiency for the conversion of excitation
energy into fluorescent radiation
» Transparency to this radiation
» Emission of light in a frequency range detectable
for photo-detectors
» Short decay time for fast response - B

HIMOH .
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Photo-detectors

Convert light into an electronic signal using photo-electric effect (convert photons
into photo-electrons o

otocathode
Need high_efﬁciency photon_detection! / Focusing electrode Photom;ltiplierTube(PMT)

Connector
pins

| 3 \ /
Primary Secondary Dynode  Anode
electron electrons

Photomultiplier tubes PMTs

Also SiPM, Silicon
photomultipliers
Compact (few mm)
Sensitive to single y




Drift tubes

Classical detection tecnique for charged particles based on
lonization of gas and measurement of the drift-time

Example: muon passing muon drift tubes

lonized
electrons dri

Cathode (HV-)

lons
drift ta
cathode

BEROIES

TRT: Kapton tube, = 4mm
MDT: Aluminium tube, & =30 mm

Charged particle



Example drift tube chamber: the ATLAS tracker
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The ALICE TPC

HV electrode (100 kV)

Inner and Outer
Containment Vessels
(150 mm, CO,)

held cage

readout chamber

......

* 845 < r < 2466 mm
« drift length 2 x 2500 mm
= drift gas Ne, COy, N, (90/10/5)
= gas volume 95 m*

= 357568 readout pads



Soft lepton

Silicon detectors

lonization detector for greater precision
& vertexing

Impact parameter

p-n junction w/o external voltage:

limited sensitive region (depletion zone) s
p-type n-type
neutral region 5 silicon silicon
f !
‘ hoes E-'; 1 I
E g negative terminal - Ipositiveterminal
2 . .
3 % | Ve
HEl - o T3
e N 2
s 8 s
1] > '
| — : z EI hoctric Nutd
L S Ko minie . -
*Diffusion fores” on holes _.:.. 4-:— *Difusion force” on electrons \/ :
E-fieid force on holes 51-— —#: Efield force on electrons |-I Voxige / ' SV ki
' L : ------- —— L




Silicon diodes as position detectors

* Spatial measurement
precision defined by
strip dimensions

ultimately limited by
charge diffusion

. 5-]0/”’"

5 Plee % é‘z '*/"'Z' %

‘\\'E_

| _‘\\'H—




CMS Si detector
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Tracking In ATLAS

TRT {

r R =1082mm

TRT
barrel layers 3 4 72 L
end-cap layers 2%3 215G 2% 60 R = 554mm
R = 514
@ hits / track 3 8 ~30 r -
R = 443
element size [ 50x400 80 4 mm SCT< R 371rnm
= mm
resolution 10x115 1 7x580 130 \ R =299mm
channels 8%10e7 6.3%| 0eb 3.5%|0e5
5 track parameters: do, zo, o, 6, 9/p Bl
Pixels { R =88.5mm
R =50.5mm
R =33.25mm
n=14
1106 mm
617 mm |
Seomm =22 Ay 4 T \
s \ A ' \'2\ '_;l |
275 mm N \“u q Y ‘
149.6 mm ;
88.8 mm
R=0 mm
27202 2505
2115.2
2710 7114 1399.7 10915 o3
TRT end-cap Bl

Pixel barre|

z=0 mm



For good tracking, needs:

* p resolution

large B and L

* high precision space points
detector with small intrinsic o,,,,.
* well separated particles
good time resolution
low occupancy => many channels
good pattern recognition

* minimise multiple scattering

* minimal bremsstrahlung, photon conversions
material in tracker
most precise points close to beam

Momentum resolution Ap/p

—
9
n

107"

1073

CMS example

—— @ TP DESIGN
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The ATLAS tracker as seen by
photon conversions

Reconstructed photon conversions show
clearly the location of (Si) tracking modules!
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(Preliminary) Summary

v'Reminders of often-used variables

v'Need several different techniques to uncover particles
identities

v Today discussed possibilities for detecting charged

particles
v Sl trackers and drift chambers are the most frequently used

v'Good performance requires optimization in several
parameters

v'To be continued next week ...



Today & next week:

- Reminders
- Cross section
- Rapidity \ pseudo-rapidity
- Bethe-Bloch ionization
- More about tracking and trackers
- Types, resolution
- More about calorimeters
- Types, resolution

- Some particle identification strategies

- Triggers
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Calorimeters

Measures the energy of both charged and neutral
particles! ABSORBER ;
Measured via secondary cascades ﬂ{*

The relative energy resolution

Improves with E:
o 1 1

— (0 ¢

E n +E
(n = #secondary cascade particles)
In contrast to momentum resolution
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Electromagnetic
calorimeters

Analytic shower model

Sketch of simple
shower development

Location of stop

S
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Types of calorimeters

_ Pb crystal
- Homogeneous calorimeter:

- Simpler geometry, simpler
corrections

- Sampling calorimeter:

- Pro: Depth and spatial
segmentation

- Con: only sampling a fraction of the B
shower, less precise, fluctuations ._s_.
- Both need multiple corrections

for non-uniformities etc f _ Evisible
sampling ~

|

deposited 3g



Energy resolution

* For EM calorimeters we can parameterise the resolution as

) -3 (]
— | =|—=| +|—=| +b
E E JE|
/ \ Systematic (or “constant™)

term

Electronic noise Photoelectron statistics (Poisson)
summed over a

few channels (3x3 or
5x5 typically)

For sampling calorimeters also additional effects : since
only a fraction of the total energy is sampled



Sketches of ATLAS and CMS calorimeters

Towers in Sampling 3
ApxAn = 0.0245-0.05

TN

Y,

Super Module EndCap "Dee” 3
(1700 crystals) 3662 crystals

. AT. = E 4-69 m‘ll
D03y Strip towers in Sampling 1
n

3x difference in sampling terms — other resolution terms similar
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Hadron calorimeters

Heavy Nucleus (e.g. U) n
v

re
e
-~

Incoming
hadron

/

by

h \/
lonization loss

lonization loss

Intranuclear casé:ade
(Spallation 1022 s)

Intranuclear cascade
(Spallation 1022 s)

% >

Internuclear cascade

Both strong and EM deposits + large fraction undetected

Effect on resolution: What we actually use
% _ 4 gp L %e - 2 @b
E JE \E E JE




Corrections: Jet energy scale

Select dijet events to study corrections:
»EM vs hadron behavior '
»Non-uniformity in response
> Pile-up

»Underlying event
»"out-of-cone” corrections

“calorimeter jet’

N
v
a 0' ] | B | I L BRE I 1=z1=zF I | =0 = | ] | R I 1= 1=2¥ I | =R B | l | R J I | BR R I L _ \
£ - Systematic uncertainties. Cone 0.4 = & ~
% 0.08 |~ Quadratic sum of all contributions ] 9 ~:
8 - === Absolute jet energy scale 7] .= E
| = 0.06 (— +=1 =1 Out-of-Cone + Splash-out — ~ Q
=] = .. Relative - 0.2<[|<0.6 _ g
'qg 0.04 - +++++ Underlying Event k= e
] — -
£ o
8 0.02[ =~ "
7] - s -~
> . - v
2 0 o g '~
s EF L e SRS PO R : 8
R s SN = S
E o = s tuaelstale oot dadatetel ool Lol L e o o U -l e
T -0.04F = S
[T E ._
= 3 ‘SQ.
-0.06 [— —
-0.087 = p
_0‘ ] 11 I 11 1 I | ) ] | ! o | I 11 1 I o B | I 111 I L1 1 I S S | I 11 1 :
20 40 60 80 100 120 140 160 180 200 —
Corrected jet P; (GeV) q



CMS: Effect of corrections electrons

CMS 2012 Preliminary, ys= 8 TeV, L = 2.4 fb

~ ECAL Barrel ﬁ

Instrumental resolution in
barrel is 1 GeV at the Z
peak

N
o
o
(=]

Z—ee

2000

—
()]
o
=]

1000

Events / ( 0.5 GeV/c?)

The plot shows the improvements in Z->ee 500
energy scale and resolution that are obtained
from applying energy scale corrections to 0 il -
account for the intrinsic spread in crystal and /0 80 9 100 1102
photo-detector response, and time- Mg [ GeVic” |

dependent corrections to compensate for
crystal transparency loss
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Same experiment, first (not fully
corrected) 13 TeV results

CMS Preliminary fs=13TeV,L=21.3pb"

| @ Data ECALBARREL

I . Z(ee)+jels

fs=13TeV,L=213pb"
IlIIlIIIlIIIIlIIII|IIII|IIII_

ECAL ENDCAP

Events

Uncalibrated

Uncalibrated
electrons .

electrons

1000 - 150;
- 100/
500 — -
i s0f
%0 60 70 80 90 100 110 120 130 60 70 80 90 100 110 120 130

uncalibrated m_,. [GeV] uncalibrated m,.. [GeV]

Non-optimised data (shown at EPS conference) from early Run 2 data in 2015.

MC number is normalised to data and calibration is based on an extrapolation
from Run 1 constants.
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Muon chambers o

Muon tracking
(much) Larger scales than for inner detector




Particle ID

Cross section view

“——— Radiator foils —

4 1in

/ ,,
‘
A

We use the combination of information to identify particles
For instance:
Shower shapes:

Electrons
Photons

Taus
Hadrons

Jets

EM
Had

EM
‘ Had

EM

High-threshold probability

Transition radiation:

0.35 —

0.3 ATLAS Preliminary -

- Data 2010 s = 7 TeV) .

025 11<0.625 i 4

0.2 - B Data, & from Z - B

: ® Data, " fromy at 7

4+ Data, 66 -

0.15 O Simulation, e* from Z 2 -

O Simulation, ef fromy 66 -

0.1 A Simulation, = » _:

0.05 v factor _E

0_ | |||||H| | |||||||| | I 11 |||| | |||||||| | |||||||| | ||||\|T
(L L L (A [ (L

1 10 1 10 102

Pion momentum [GeV]

Electron momentum [GeV]



Particle ID from ALICE

250 _l' T L o 8 Bl
pp @ 900 GeV - ]
—~1000—Mm™ ™ 17177 T T —— =
3 S 200 ]
- _ ] ALICE performance
3 80P @Ns =900 Gev (2009 data) | | sl work in progress
W 600 o i
ITS standalone i
e S 100 :
400 10 ¢ il
300 O i
L
*E - 50
100 — i
Y T R R TR W
momentum * sign [GoV/c] 0

1 10
momentum p (GeV/c)



%
Slide from CMS

dE/dx
* Using dE/dx data to fit the KK invariant mass distribution fo detect the ¢(1020).

Fig. 15 K"K~ invariant mass % T T T i F T ' T P
distribution, with (a) both kaons 3 70F 2 °F
satisfying the d E /dx = 600} = 600f- +
requirement and with (b) at least =~ F = F it w m
one particle failing that 8500F %5005 hﬂ Wﬂm } +# # w*
requirement. In (a) a fit to the g‘m;_ 3 Yield: 1728 + 102 2 400 mﬁﬁ #
¢(1020) hypothesis is shown S 200 Mean: 1019.58 + 0.22 MeV/c® & 300F "‘m
O n: = € O LK Combinations failing dE/dx selection
2008 . 09129+ 0.32 MeV/c? 200?
- f\ Width fixed to PDG value
100 lﬂ., CMS Preliminary - 2.74pb”" - ys=13TeV
U: —u—X 1 ‘|\|—4_ IS TN S TN NN T TN T [T N E 14 l l l
1000 1020 1040 1060 1080 1100 1120 =
K'K invariant mass [MeV/c?] 2
a) x 1 3
( : 10
10
10°
13 TeV data )
10
1
P Hobson 33

momentum (GeV/c)



Particle ID with Cherenkov detectors

Charged, relativistic particles in dielectric
Polarization effect, Cherenkov photons emitted only if

_C - . .
Up > @D where n(1) is the refractive index
otosensitive
______ - Position Detector
mﬁjffg"" :
............. harged Particle
Container 2
Simple geometric derivation gives Radiator ) Quartz Window  Drift Electrode
the Cherenkov angle
1 Detector examples: Super-K , IceCube

cosO,. = Y
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Cherenkov - applications

LHCb RICH
Measurement of Cherenkov angle: I
Use medium with known refractive indexn > B ‘
B Photon
Principle of: . : Detectors
Magnetic
RICH (Ring Imaging Cherenkov Counter) Shield _— ad
DIRC (Detection of Internalty Reflected Cherenkov Light) 250 ™

Cherenkov detection widely used in both collider experiments and cosmic ray experiments,
For instance ALICE, AMS, the Air Cherenkov Telescope etc

LHCb RICH Event

IDecember 2000} VELO / i \ »~ Track
exit window '- hﬂarbun Fiber
Exit Window
|
Plane
Mirror

Particles pass through radiator and radiated photons focused and detected by photo detector
Velocity determined by measuring radius of ring
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Anode wires with deposits

Radiation damage

The high particle flux accelerates the aging process

This affects both the performance of the electronics as
well as detection quality.

For instance
o discoloration of scintillator material

. anode wires in wire chamber can get deposits
of polymers and free radicals

— Silicon detectors: When a high-energy particle
® 0 ¢ traverses a silicon detector, lattice defects are
produced. These take the form of lattice vacancies
« and atoms at interstitial sites. They move around and
combine with bulk impurities to create energy levels
¢ ¢ 6 in the normally "forbidden" bandgap. (@CERN Courier)
interstitizl




Triggers

- Purpose: Reject events!

- When storage and

processing power
iInsufficient

- Careful what you reject —
cannot be recovered

- Multilayer structure to

Improve rejection factor and
minimize mistakes

Start

ADC
Abort ‘ 7

EIEQ |-Full

Beam crossing

_SJP L1 Trigger
Discriminator

Busy Logic

CPU

High Level
Trigger



Trigger input
ATLAS example

(R

Decision times from us to s

egion-of-Interest Unit

(Level-1/Level-2)

Central Trigger
Processor
|

. . . Timing, trigger and
O n Iy I Im |ted 'g ranu Ia r|y (control distribution)
information available for { ¥
the first trigger levels Front-end Level-2 Trigger

- "the trigger does not determine which physics model is

right, only which physics model is left” A. Bocci




Example: Higgs

wL1
Coarse
granularity

L1: This is not Higgs




Example: Higgs

a2
Improved
reconstruction,
improved
ability to reject
events

[ ]

L2: This is not Higgs




ExamEIe: Higgs

+EF
high quality
reconstruction,
improved 1
ability to reject
events

| L3/EF: This is not Higgs




Trigger efficiency

Enters in calculation of cross section:

- N /I Integrated luminosity

I Acceptance 'r

Efficiency
Examples: ATLAS trigger:
L>)‘ 1— T I P P I P I P I Y I_ 5 1.0057‘ T | T T T T T T T T | T T T T | T T T T | T |7
o I 1 & - ATLAS Preliminary
S ,al J & 1. enaEn_ mummEE i
T —— T e R T s g gy e
i — 7 a 4 0’* 0’“ * *e® . ?
0.6 . 0.995[ 3 u
- ATLAS - - .
0.4 \s =8 TeV, ILdt=2o.3fb" _ 0.99 J- p ]
- s Level 1 (MU15) i - Ldt=2.41b ]
- * Level 2 N N s L1 EM16 .
0.2~ o Event Filter ) 0.985[ -
i Z - py, mu24i OR Mu36, [n|<1.05 | C e L1 EM16VH i
0 . 88Seget— L o1 l N B B
0 10 20 30 40 50 60 0.98 5 3 0 ] >

Muon P, [GeV]

=



Online analysis: by-passing the trigger?

4
Signal

Dijets

: If we relax storage requirement
hit hard

Analysis can be done directly on first

by level trigger output

trigger

Detector performance/ resolution
degraded

events

Background
> -but not always a show stopper
EEE] oo s o v First analyses/ attempts on-going at
First alignment Better alignment .
0y 92 Mev/c oy = 49 Mev/ the LHC experiments

Raw data still not stored ...

B. Storaci, CERN Seminar




Summary/outlook

- Success often spells many different techniques

- Detector choice depends on conditions — almost always a
compromise, signal vs background vs costs

- Triggers part of current detector technology
- Events not triggered not stored — online analysis only

- Several challenges
- Calibration always necessary
- Radiation hardness — detectors affected by particle flux



