FYST1/ Lecture 8

Statistics and hypothesis testing

Thanks to T. Petersen, S. Maschiocci,
G. Cowan, L. Lyons



Plan for today:

Introduction to concepts
— The Gaussian distribution

Likelihood functions
Hypothesis testing

— Including p-values and significance

More examples
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Interpretation of probability %

1. Interpretation of probability as RELATIVE FREQUENCY
(frequentist approach):
A, B, ... are outcomes of a repeatable experiment:

times outcome is A
n

P(A) = lim

nNn—o0

See quantum mechanics, particle scattering, radioactive decays ...

2. SUBJECTIVE PROBABILITY
A, B, ... are hypotheses (statements that are true or false)
P(A) = degree of belief that A is true

In particle physics, frequency interpretation often most useful, but
subjective probability can provide a more natural treatment of non-
repeatable phenomena

(systematic uncertainties, probability that higgs exists ...)



PDF = probability density function

Suppose outcome of experiment is continuous value Xx:

P(x found in [x,x+dx]) = f(x)dx

— f(X) = probability density function (pdf)

With:
f_voo f(x)dx=1 Normalization
(x must be somewhere)
Note:
e f(x)=20

e f(x)is NOT a probability ! It has dimension 1/x !



Definitions

Mean or expectation value
Elx] = fxf(x)dx = i

Variance:




PDF examples

Binomial: N trials with p chance of success, probability for n successes:

N

AN — it - P

f(n;p,N) =

If N> and p = 0 but Np—>A then we have Poisson: (already N>50, p<0.1

works) fln; A) = i—?e‘)‘

Poisson and Gaussian distribution comparison

—— Poisson (A = 20)
—— Gaussian (u = 20)
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The Gaussian distribution

The Gaussian pdf is defined by
2 1 (—(x — mf) E[x] =

(x:p,07) = _ exp L _ 2
flxp, o7 5— 1 L 53 V[x] = o
"5: T T T T T
= - - - . ”
< 06 n=0,0=1 ”standard Gaussian
= --- u=0, 6=2 N _
u=1, =1 Special case: = U, o =1
04 1 o —x°/2
e p(z) = ——e""
ATAN V2T
02 | Jooa . If yis a Gaussian with p, 6%, then
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] N x = — follows ¢(x)




The Gaussian distribution

Range Inside Outside
It is useful to kn-ow.the most o 68 7 39 7,
common Gaussian integrals: kg 95 7, 5 07
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ATLAS examples of Gaussian
distributions

Vertex z [mm]

Distribution of vertex z
coordinate for tracks
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Central limit theorem

What we used already in MC studies

Central Limit theorem:

The sum on N independent continuous random variables x, with means
. and variances ;> becomes a Gaussian random variable with mean
u =X u and variance 6® = X.6.% in the limit that N approaches infinity

Try for yourselves!

_Hist_Sum |

Example: sum of 10 uniform
numbers = Gaussian!

Gaussian functions play
important role in applied statistics
Uncertainties tend to be Gaussian!
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Hist Sum
Entries 100000

Moan 0.0008772

Canstant 3896+ 151
Mean  0.002428 1 0.003160

Sigma 0.6965 & 0.0021
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Quick exercise

Measurement of transverse momentum of a
track from a fit
— Radius of helix given by R=0.3Bp,

— Track fit returns a Gaussian uncertainty in the
curvature, e.g. the pdf is Gaussian in 1/p;

— What is the error on p;?

0.
pr __
- pT ) O-l/pT
Pr
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Error propagation in two variables

df > df 2

G§=(&)Ux+(@)gi+2 y
cov|x, | = p = correlationcoefficient
O'XO'y
w X X
xxk_“?(x ;Q%(
o -1< p <+1 "':"X%'x Xé?:
e p=0:variables are INDEPENDENT XX % ”g
e p#0:variables are CORRELATED X
e p>0:correlated ) e e
* p <0 : anti-correlated X |
)(ll;l&(g)ﬁ,l( %
X{‘/x X
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Parameter estimation

The parameters of a pdf are constants that characterize

its shape, e.g.
-’ 1
fla;0) = e/

S

random variable parameter

Suppose we have a sample of observed values: & = (x1,...,xn)

We want to find some function of the data to estimate the
parameter(s):

a(%) « estimator written with a hat

Sometimes we say ‘estimator’ for the function of x|, ..., x,;
‘estimate’ for the value of the estimator with a particular data set.
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Estimators

If we were to repeat the entire measurement, the estimates
from each would follow a pdf:

9(8:0) |

best
/ —

large
variance

We want small (or zero) bias (systematic error): b= E[0] — 6

— average of repeated measurements should tend to true value.

And we want a small variance (statistical error):  V[0]

— small bias & variance are 1n general conflicting criteria
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Likelihood functions

Given a PDF f(x) with parameter(s) 0, what is the probability that with N
observations, x; falls in the intervals [x;; x.+ dx; ]?
Described by the likelihood function:

L(0) = H f(x,0)dx;



Likelihood functions

Given a set of measurements x, and parameter(s) 0,
the likelihood function is defined as:

The principle of maximum likelihood for parameter
estimation consists of maximizing the likelihood of
parameter(s) (here 0) given some data (here x)

The likelihood function plays a central role in

statistics, as it can shown to be:

v Consistent (converges to the right value!)

v' Asymptotically normal (converges with Gaussian
errors)

Efficient and “optima

I”

if it can be applied in practice

Computational: often easier
to minimize log likelihood:

e

Gl

In problems with Gaussian
errors boils down to a y*

=1

Two versions, in practice:
- Binned likelihood
- Unbinned likelihood



Binned likelihood

Sum over bins in a histogram:
Nbins
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Unbinned likelihood

Sum over single measurements:
Nlneas.

C(e)unbinned T H PDF(x;}bserved)

Distribution of 25 unit Gaussian numbers
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Hypothesis testing
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Hypotheses and acceptance/rejection
regions

Goal is to make some statement based on the observed data x, as to the
validity of the possible hypotheses.

A test of hypothesis H is defined by specifying a critical region W

(also called rejection region) of the data space S, such that there is no
more than some (small) probability a, assuming H  is correct, to observe

the data there:
P(xeW[H,) < «

If X is observed there, reject H,.
« is called the size or significance level of the test.

The complementary region is called acceptance region.



Test statistics

State hypothesis (null and alternative)

Set criteria for decision, select test statistics, select a
significance level

Compute the value of the test statistics and from that the
probability of observation under null-hypothesis (p-value)

Make the decision! Reject null hypothesis if p-value is below
significance level

/ Alternative hypothesis
Null hypothesis pETA




Test statistics

The decision boundary can be defined by an equation of the form:

t(x

T

where t(x, ..., X ) is a scalar test statistic

We can work out the pdf's:

g(t|H0)= Q(t‘H1)

Decision boundary is now a single 'cut’
on t, which divides the space into the
critical (rejection region) and the
acceptance region.

This defines a TEST: if the data fall in the

critical region, we reject H,
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Example of hypothesis test

The spin of the newly discovered Higgs-like particle (spin O or 2?)

PDF of spin 2
hypothesis

PDF of spin 0
hypothesis

:‘?0_3__II|I[I[|1I]I| IIIIII__
5 - ATLAS —Data
§025__ H%'Y'Y _JP=O+ =
o [ 1s=8TeV [Ldt=207f" - -2t ]
E 0.2:— (qu=0%) .
S -
Z 0.15\-
0.1~
0.05}
Y5

Test statistics (Likelihood ratio[decay angles] )




Selection

We have a data sample with two kinds of events, corresponding to
hypotheses H (background) and H, (signal).

We want to select those of type H..

Each event is a point in X space (n dimensions).

What 'decision boundary' should we use to accept/reject events as
belonging to event types H or H.?

One possibility is to select Cj
events with several 'cuts’
€q.

Xi < Ci

X; < C,




Other selection options

But we can also use some other sort of decision boundary !!

linear or nonlinear

How can we formalize this to choose the boundary in an 'optimal’ way?



ALICE example

Use the ALICE Time Projection Chamber to identify the particle species:
electron, muon, pion, kaon, proton, deuteron

particle momentum (p), specific energy loss in TPC (dE/dX) (and more)

“x” —

TPC dE/dx (a.u.)
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Example:
| want to select electrons
(hypothesis H.) from all

other particles
(hypothesis H))

In Bayesian approach:
Can add prior
hypotheses on the
relative particle
abundances (e.g. you
see that pions are many
more!)
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ALICE example

Looking for electrons: null hypothesis H is to be a hadron
Acceptance region here: Rejection region here (for bkg = hadrons)
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Trying to select signal events:

(i.e. try to disprove the null-
hypothesis stating it were

Type | / Type Il errors: g svecicumoen

¢ signal
/214'/(9,- 2 ground
signal © Type Il
error .
Rejecting the hypothesis H_ when it is true is a Type-l error. 226k | TyPe! ©
0 " ground | error |

The maximum probability for this is the size of the test:

P(xeW|H,) < «

But we might also accept H, when it is false and an alternative H, is true.
This is called Type-Il error, and occurs with probability:

P(xeS-W[H,) = B

One minus this is called the power of the test with respect to the
alternative hypothesis H.:

Power=1-03



Signal/background efficiency

The probability to reject background hypothesis for a background event
(background efficiency) is:

e, = J7 g(tlb)dt = «

cut S 5
- {cut
accept b a reject b
The probability to accept a signal event  '° |
as signal (signal efficiency) is: 1;' \ o(t1b)
‘ a g(tls) ]
= ft g(tls)dt = 1-p 05 L/ \
o % / \
\/ \\
0 i T 1 —
0 2 3 4 5
1



Neyman-Pearson’s lemma

(Chap 5)
The Neyman-Pearson lemma states: to ge the highest
purity for a given efficiency, (i.e. highest power for a given
significance level), choose the acceptance region such
that:
g(t|Ho)

C
g(tiHy) 7
where c=constant that determines the efficiency

. . o . Lo
This even gives that the likelihood ratio, —21n L_' is the
1

most powerful test



Significance tests/goodness of fit

Suppose hypothesis H predicts pdf f(X|H) for a set of
observations X = (x, ..,x )

We observe a single point in this space: k’obs

What can we say about the validity of H in light of the
data?

1. Tobs
J Z more
Decide what part of the 1 ’ compatible
data space represents less / with A
compatibility with H than 7 less
does the point % compatible
(Not unique!) o with H
» Lj;
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p-values

Express 'goodness-of-fit' by giving the p-value for H:

p = probability, under assumption of H, to observe data with equal or
lesser compatibility with H relative to the data we got

NOTE! This is NOT the probability that H is true!

In frequentist statistics we don't talk about P(H) (unless H represents a
repeatable observation).

In Bayesian statistics we do. Use Bayes' theorem to obtain

.. P(XH)m(H)
P{HRE) = [P(XH)m(H) dH

where 1t(H) is the prior probability for H.
For now stick with the frequentist approach.



Significance of an observed signal

Suppose we observe n events. These can consist of:
n, events from known processes (background)

n, events from a new process (signal)

If n_, n_ are Poisson random variables with means s, b, then n=n_+n_is
also Poisson, with mean s+b

(s+ b)n e—(s+b)

P(n:s.,b) = o

Suppose b=0.5, and we observe nobs=5. Should we claim evidence for a
new discovery?



Significance of an observed signal

Suppose we observe n events. These can consist of:
n, events from known processes (background)

n, events from a new process (signal)

If n_, n_ are Poisson random variables with means s, b, then n=n_+n_is
also Poisson, with mean s+b

(s+ b)n e—(s+b)

P(n:s.,b) = o

Suppose b=0.5, and we observe nobs=5. Should we claim evidence for a
new discovery?

Give p-value for hypothesis s=0:
p-value = P(n 25 ; b=0.5, s=0)

= 1.7 x10% #P(s=0) !l




Significance vs p-value

Often define significance Z as the number of standard deviations that a
Gaussian variable would fluctuate in one direction to give the same
p-value

r Small p = unexpected
/t/

™ X

c0 1 _1.2/2
p:/ e *¥/%dz=1-®(2) 1 - TMath::Freq

z V2w
Z=%"11-p) TMath: :NormQuantile
(Xq-1)/o 1 2 3 4 5
P 16% 2.3% 0.13% 0. 003% 0.3*10°




Significance of a peak

= 10
Suppose we measure a value < — data
x for each event and find: ey 0 = R SRRSO
6
4 il
Each bin (observed) is a Poisson
: 2 r il -
r.v., means are given by the |1 s G
dashed line 0 : | Pl
0 5 10 15 20

X

In the two bins with the peak, 11 entries found with b = 3.2
The p-value for the s=0 hypothesis is:
P(n>11;b=3.2,s=0)=5.0x 10*
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Significance of a peak

But ... did we know where to look for the peak®?
— give P(n211) in any 2 adjacent bins
|s the observed width consistent with the expected x resolution?
— take x window several times the expected resolution
How many bins x distributions have we looked at?
— look at a thousand of them, you'll find a 107 effect
Did we adjust the cuts to “enhance” the peak”
— freeze cuts, repeat analysis with new data
How about the bins to the sides of the peak ... (too low!)
Should we publish ?7?
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How many c’s?

HEP folklore is to claim discovery when p=2.9 x 107, corresponding to a
significance Z=5.

This is very subjective and really should depend on the prior probability
of the phenomenon in question, e.g.

Phenomenon Reasonable p-value for discovery
D°D° mixing ~0.05
Higgs =10
Life on Mars ~10-°
Astrology ~1020

One should also consider the degree to which the data are compatible
with the new phenomenon, not only the level of disagreement with the

null-hypothesis: p-value is only the first step !!!



Look-elsewhere-effect (LLE)

Example from CDF: Is there a bump
at 7.2 GeV ? (and even 7.75 GeV?!)

Excess has significance but when
we take into account that the
bump(s) could have been anywhere

in the spectrum (the look-

elsewhere-effect) significance is

reduced:

p-value(corr) = p-value x (number

of places it might have been
spotted in spectrum)
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Results in low significance
Never saw these again
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Remember the penta-quark ...
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The ATLAS/CMS diphoton bump
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(example 3.2)

Limit setting
CMS 2012 Higgs
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(example 3.2)

Confidence intervals

Upper limt on signal cross
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Summary/ outlook

* Gaussian distribution very useful

— Errors tend to be gaussian

* To check a New Physics hypothesis against the
Standard Model

— Define test statistics
— Define level of significance
— Remember the look elsewhere effect
* P-values gives P(data|null hypothesis)

— It does not say whether the hypothesis is true!



