
FYST17 Lecture 8
Statistics and hypothesis testing

Thanks to T. Petersen, S. Maschiocci, 
G. Cowan, L. Lyons  
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Plan for today:

• Introduction to concepts

– The Gaussian distribution

• Likelihood functions

• Hypothesis testing

– Including p-values and significance

• More examples

22



Interpretation of probability
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PDF = probability density function
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Definitions
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PDF examples

Binomial: N trials with p chance of success, probability for n successes:

If N→ and p → 0 but Np→ then we have Poisson: (already N>50, p<0.1 

works)  f 𝑛; 𝜆 =
𝜆𝑛

𝑛!
𝑒−𝜆

And for large s  can

use Gaussian

f
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The Gaussian distribution

The Gaussian pdf is defined by

E[x] = 
V[x] = ²

”standard Gaussian”

If  y is a Gaussian with , ², then 
x =

y − μ

σ
follows (x)
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The Gaussian distribution

It is useful to know the most 
common Gaussian integrals:

@Wikipedia
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ATLAS examples of Gaussian 
distributions

Distribution of vertex z 
coordinate for tracks

Invariant mass for K0
s peak

fitted with a Gaussian (!)
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Central limit theorem

What we used already in MC studies

Try for yourselves!

Example: sum of 10 uniform 

numbers = Gaussian!

Gaussian functions play 

important role in applied statistics

Uncertainties tend to be Gaussian! 

Central Limit theorem:
The sum on N independent continuous random variables xi with means 
i and variances  i² becomes a Gaussian random variable with mean     
 = i i and variance  ² = i i² in the  limit that N approaches infinity
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Quick exercise

Measurement of transverse momentum of a 
track from a fit

– Radius of helix given by R=0.3BpT

– Track fit returns a Gaussian uncertainty in the 
curvature, e.g. the pdf is Gaussian in 1/pT

– What is the error on pT?

𝜎𝑝𝑇
𝑝𝑇

= 𝑝𝑇 ⋅ 𝜎1/𝑝𝑇
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Error propagation in two variables
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Parameter estimation
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Estimators
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Likelihood functions

Given a PDF f(x) with parameter(s) , what is the probability that with N 
observations, xi falls in the intervals [xi ; xi+ dxi ]?
Described by the likelihood function:
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Given a set of measurements xi and parameter(s) , 
the likelihood function is defined as:

The principle of maximum likelihood for parameter 
estimation consists of maximizing the likelihood of 
parameter(s) (here ) given some data (here x)

The likelihood function plays a central role in 
statistics, as it can shown to be:
 Consistent (converges to the right value!)
 Asymptotically normal (converges with Gaussian 

errors)
Efficient and ”optimal” if it can be applied in practice

Computational: often easier 
to minimize log likelihood: 

In problems with Gaussian 
errors boils down to a ²

Two versions, in practice:
- Binned likelihood
- Unbinned likelihood

Likelihood functions

f
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Binned likelihood
Sum over bins in a histogram:
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Unbinned likelihood
Sum over single measurements:
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Hypothesis testing
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Hypotheses and acceptance/rejection 
regions
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Test statistics

1. State hypothesis (null and alternative)

2. Set criteria for decision, select test statistics, select a 
significance level

3. Compute the value of the test statistics and from that the 
probability of observation under null-hypothesis (p-value)

4. Make the decision! Reject null hypothesis if p-value is below 
significance level

Null hypothesis
Alternative hypothesis
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Test statistics
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Example of hypothesis test
The spin of the newly discovered Higgs-like particle (spin 0 or 2?)

PDF of spin 2
hypothesis

PDF of spin 0
hypothesis

Test statistics (Likelihood ratio[decay angles] ) 2424



Selection
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Other selection options
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ALICE example
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ALICE example

2828



Type I / Type II errors: 
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Signal/background efficiency
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Neyman-Pearson’s lemma 

This even gives that the likelihood ratio,  −2 ln
ℒ0

ℒ1
, is the 

most powerful test
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The Neyman-Pearson lemma states: to ge the highest 
purity for a given efficiency, (i.e. highest power for a given 
significance level), choose the acceptance region such 
that:

𝑔(𝑡|𝐻0)

𝑔(𝑡|𝐻1)
> c ,

where c=constant that determines the efficiency

(Chap 5)



Significance tests/goodness of fit
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p-values
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Significance of an observed signal
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!
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Significance of an observed signal
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!
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Significance vs p-value
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Small p = unexpected
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Significance of a peak
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Significance of a peak
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How many ’s?
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Look-elsewhere-effect (LLE)

Example from CDF: Is there a bump 
at 7.2 GeV ? (and even 7.75 GeV?!)  

Excess has significance but when 
we take into account that the 
bump(s) could have been anywhere 
in the spectrum (the look-
elsewhere-effect) significance is 
reduced: 

p-value(corr) = p-value × (number 
of places it might have been 
spotted in spectrum)

40
In this case ~  mass interval / width of bump

Results in low significance
Never saw these again
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Remember the penta-quark …

4141



The ATLAS/CMS diphoton bump
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Limit setting
CMS 2012 Higgs 

result  

(example 3.2)
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Confidence intervals
Upper limt on signal cross 
section/ SM Higgs cross section 
in H  WW channel

(example 3.2)
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Summary/ outlook

• Gaussian distribution very useful

– Errors tend to be gaussian

• To check a New Physics hypothesis against the 
Standard Model

– Define test statistics

– Define level of significance

– Remember the look elsewhere effect

• P-values gives P(data|null hypothesis) 

– It does not say whether the hypothesis is true!
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