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IV. Space-time symmetries

Æ Conservation laws have their origin in the 
symmetries and invariance properties of the 
underlying interactions

Æ Exact symmetry => conservation law => an 
observable whose absolute value cannot be 
defined (“non-observable”)

Symmetries, conservation laws and 
“non-observables”

Symmetry transformation Conservation law or 
selection rule Non-observable

Space translation 
x => x+δx

momentum absolute spatial position

Rotation
x => x’

angular momentum absolute spatial direction

Time translation
t => t+δt

energy absolute time

Reflection
x => x’= −x

parity “handedness” (absolute 
generalized right/left)
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Charge conjugation
q=> -q 

particle-antiparticle 
symmetry

absolute sign of electric 
charge

ψ=> eiqθψ charge q rel. phase between states 
of different q

ψ=> eiLθψ lepton number L rel. phase between states 
of different L

ψ=> eiBθψ baryon number B rel. phase between states 
of different B

Symmetry transformation Conservation law or 
selection rule Non-observable
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Translational invariance

�  When a closed system of particles is 
moved from one position in space to another, its 
physical properties do not change

Consider an infinitesimal translation:

the Hamiltonian of the system transforms as

In the simplest case of a free particle, 

(40)

From Equation (40) it is clear that

(41)

which is true for any general closed system: the 
Hamiltonian is invariant under the translation 

xi x'i→ xi δx+=

H x1 x2 … xn, , ,( ) H x1 δx+ x2 δx+ … xn δx+, , ,( )→

H 1
2m
------- ∇ 2– 1

2m
-------

x2

2

∂
∂





–
y2

2

∂
∂

z2

2

∂
∂




+ += =

H x'1 x'2 … x'n, , ,( ) H x1 x2 … xn, , ,( )=
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operator , which is defined as an action onto an 
arbitrary wavefunction  such that

(42)

For a single-particle state . From 
eq. (42) one obtains:

Since the Hamiltonian is invariant under translation, 

.Using (42) and ψ’ definition 

(43)

This means that  commutes with Hamiltonian (a 

standard notation for this is )

Since  is an infinitely small quantity, translation (42) 
can be expanded as

D̂

ψ x( )

D̂ψ x( ) ψ x xδ+( )≡

ψ' x( ) H x( )ψ x( )=

D̂ψ' x( ) ψ' x xδ+( ) H x xδ+( )ψ x xδ+( )= =

D̂ψ' x( ) H x( )ψ x xδ+( )=

D̂ψ' x( ) D=
ˆ

H x( )ψ x( ) H x( )ψ x xδ+( ) H= x( )D̂ψ x( )=

D̂

D̂ H,[ ] D̂H HD̂ 0=–=

xδ
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(44)

Form (44) includes explicitly the momentum operator 

, hence the translation operator  can be 
rewritten as 

(45)

Substituting (45) to (43), one obtains

(46)

which is nothing but the momentum conservation law 
for a single-particle state whose Hamiltonian is 
invariant under translation.

Generalization of (45) and (46) for the case of 
multiparticle state leads to the general momentum 

conservation law for the total momentum 

ψ x xδ+( ) ψ x( ) xδ ψ x( )∇⋅+=

p̂ i∇–= D̂

D̂ 1 i xδ p̂⋅+=

p̂ H,[ ] 0=

p pi
i 1=

n

∑=
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Rotational invariance

�  When a closed system of particles is 
rotated about its centre-of-mass, its physical 
properties remain unchanged

Under the rotation about, for example, z-axis through 
an angle θ, coordinates  transform to new 
coordinates  as following:

(47)

Correspondingly, the new Hamiltonian of the rotated 
system will be the same as the initial one,

Considering rotation through an infinitesimal angle 
, equations (47) transform to

(θ small => cosθ = 1, sinθ = δθ)

xi yi zi, ,

x'i y'i z'i, ,

x'i xi θcos yi θsin–=

y'i xi θsin yi θcos+=

z'i z=

H x1 x2 … xn, , ,( )=H x'1 x'2 … x'n, , ,( )

θδ

x' x y θ , y'δ– y x θ , z'δ+ z= = =
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A rotational operator is introduced by analogy with 

the translation operator :

(48)

Expansion to first order in  gives

where  is the z-component of the orbital angular 

momentum operator :

(49)

Remember: classical mechanics 

Æ For the general case of the rotation about an

arbitrary direction specified by a unit vector , 
has to be replaced by the corresponding

D̂

R̂zψ x( ) ψ x'( )=ψ x y θ y xδθ,z+,δ–( )≡

θδ

ψ x'( ) ψ x( ) θ y x∂
∂


δ–= x y∂

∂– 
ψ x( ) 1 i θL̂zδ+( )ψ x( )=

L̂z

L̂

L̂z i x y∂
∂ y x∂

∂– 
 –=

L r p× Lz xpy ypx–( )=⇒=

n L̂Z
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projection of : , hence

(50)

Considering  acting on a single-particle state 

 and repeating same steps as for 
the translation case, one gets:

(51)

(52)

=> conservation of angular momentum!

This applies for a spin-0 particle moving in a central 
potential, i.e., in a field which does not depend on a 
direction, but only on the absolute distance.

L̂ L̂ n⋅

R̂n 1 i θ L̂ n⋅( )δ+=

R̂n

ψ' x( ) H x( )ψ x( )=

R̂n H,[ ] 0=

L̂ H,[ ] 0=
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Æ If a particle possesses a non-zero spin, the total
angular momentum is the sum of the orbital and
spin angular momenta:

(53)

and the wavefunction is the product of the 

[independent] space wavefuncion  and spin 
wavefunction :

(54)

For the case of spin-1/2 particles, the spin operator is 
represented in terms of Pauli matrices σ:

(55)

where σ has components :
(recall chapter 1 of these notes)

, , (56)

Ĵ L̂ Ŝ+=

ψ x( )
χ

Ψ ψ x( )χ=

Ŝ 1
2
---σ=

σ1
0 1
1 0 

 
 

= σ2
0 i–
i 0 

 
 

= σ3
1 0
0 1– 

 
 

=
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Let us denote now spin wavefunction for spin “up” 
state as  ( ) and for spin “down” state 
as  ( ), so that

(57)

Both α and β satisfy the eigenvalue equations for 
operator (55):

Analogously to (50), the rotation operator for the 
spin-1/2 particle generalizes to

(58)

When the rotation operator  acts onto the wave 

function , components  and  of  act 
independently on the corresponding wavefunctions:

χ α= Sz 1 2⁄=

χ β= Sz 1– 2⁄=

α 1
0 

 
 

 , β 0
1 

 
 

= =

Ŝzα 1
2
---α  , Ŝzβ 1

2
---β–= =

R̂n 1 i θ Ĵ n⋅( )δ+=

R̂n

Ψ ψ x( )χ= L̂ Ŝ Ĵ

ĴΨ L̂ Ŝ+( )ψ x( )χ L̂ψ x( )[ ]χ ψ x( ) Ŝχ[ ]+= =
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That means that although the total angular 

momentum has to be conserved, , the 
rotational invariance does not in general lead to the 

conservation of  and  separately:

However, presuming that the forces can change only 
orientation of the spin, but not its absolute value ⇒

Æ Good quantum numbers are those which are 
associated with conserved observables 
(operators commute with the Hamiltonian)

Ĵ H,[ ] 0=

L̂ Ŝ

L̂ H,[ ] Ŝ H,[ ] 0≠–=

H L̂2,[ ] H Ŝ2,[ ] 0= =
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Spin is one of the quantum numbers which 
characterize any particle - elementary or composite. 

�  Spin  of a composite particle is the total
angular momentum  of its constituents in their
centre-of-mass frame

− Quarks are spin-1/2 particles ⇒ the spin quantum
number SP=J can be either integer or half-integer for
composite particles (hadrons)
− Its projections on the z-axis – Jz – can take any of
2J+1 values, from -J to J with the “step” of 1,
depending on the particle’s spin orientation

�  Usually, it is assumed that L and S are
“good” quantum numbers together with J=SP ,

Figure 39:   A naive illustration of possible Jz values for 
spin-1/2 and spin-1 particles

SP
J

z
0 1/2 1-1/2-1

spin-1
spin-1/2

Jz:
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while Jz depends on the spin orientation.

Using “good” quantum numbers, one can refer to a 
particle via spectroscopic notation, like

(59)

− Following chemistry traditions, instead of numerical
values of L=0,1,2,3..., letters S,P,D,F... are used
correspondingly
− In this notation, the lowest-lying (L=0) bound state
of two particles of spin-1/2 will be 1S0 or 3S1 

For mesons with L ≥ 1, possible states are:
1LL , 3LL+1 , 3LL , 3LL-1

Figure 40:   Quark-antiquark states for L=0

L2S 1+
J

L=0

S=1/2+1/2=1S=1/2-1/2=0
J=L+S=1J=L+S=0

3S1
1S0
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Æ Baryons are bound states of 3 quarks ⇒ there
are two orbital angular momenta connected to the
relative motion of quarks.

− total orbital angular momentum is L=L12+L3 .

− spin of a baryon S=S1+S2+S3 ⇒ S=1/2 or S=3/2

Possible baryon states:

Figure 41:   Internal orbital angular momenta of a 
three-quark state

2S1/2 , 4S3/2 (L = 0)
2P1/2 , 2P3/2 , 4P1/2 , 4P3/2 , 4P5/2 (L = 1)
2LL+1/2 , 2LL-1/2 , 4LL-3/2 , 4LL-1/2 , 4LL+1/2 , 4LL+3/2 (L ≥ 2)

q1

q2

q3

L12

L3
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Parity

�  Parity transformation is the transformation
by reflection:

(60)

A system is invariant under parity transformation if

Æ Parity is not an exact symmetry: it is violated in weak
interaction => absolute “handedness” CAN be defined!

A parity operator  is defined as

(61)

where Pa is the parity eigenvalue. Two consecutive 
reflections must give back the initial system:

(62)

From equations (61) and (62), 

xi x'i→ xi–=

H x1 x2 … xn–, ,–,–( ) H x1 x2 … xn, ,,( )=

P̂

P̂ψ x t,( ) Paψ x– t,( )≡

P2ˆ ψ x t,( ) ψ x t,( )=

Pa +1 , -1=
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Consider a particle wavefunction which is a solution 
of the Dirac equation (17):

, (63)

where u(p) is a four-component spinor (see p. 11) 
independent of x. Parity operation on this 
wavefunction is:

(64)

When  (the particle is at rest), the state ψ is an 
eigenstate of the parity operator:

(65)

with eigenvalue Pa. Pa is called the intrinsic parity of a 
particle a: intrinsic parity= parity of a particle at rest.

For a system of n particles,

ψ
p

x t,( ) u p( )ei px Et–( )=

P̂ψ
p

x t,( ) Pau p–( )ei p–( ) x–( ) Et–( )=

p 0=

P̂ψ0 x t,( ) Pau 0( )e i– Et Paψ0 x t,( )==

P̂ψ x1 x2 … xn t, , ,,( ) P1P2…Pnψ x1 x2 … xn t,–, ,–,–( )≡
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In polar coordinates, the parity transformation is:

and a wavefunction can be written as

(66)

In Equation (66), Rnl is a function of the radius only, 

and  are spherical harmonics, which describe 
angular dependence.

Under the parity transformation, Rnl does not 
change, while spherical harmonics change as

⇓

Æ which means that a particle with a definite orbital
angular momentum is also an eigenstate of parity
with an eigenvalue Pa(-1)l.

r r'→ r , θ θ'→ π θ , ϕ ϕ '→– π ϕ+= = =

ψnlm x( ) Rnl r( )Yl
m θ ϕ,( )=

Yl
m

Yl
m θ ϕ,( ) Yl

m π θ– π ϕ+,( )→ 1–( )lYl
m θ ϕ,( )=

P̂ψnlm x( ) Paψnlm x–( ) Pa 1–( )lψnlm x( )= =
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Considering only electromagnetic and strong 
interactions, and using the usual argumentation, one 
can prove that parity is conserved:

�  Recall: the Dirac equation (17) (relativistic
quantum mechanics) suggests a four-component
wavefunction to describe both electrons and
positrons: 2 components for electrons, 2
components for positrons. Note that in classical
QM there would be no connection between
parities of e- and e+.

Æ Intrinsic parities of e- and e+ are related, namely:

This is true for all fermions (spin-1/2 particles), i.e.,

(67)

Experimentally this can be confirmed by studying the 
reaction e+e- → γγ where initial state has zero orbital 

P̂ H,[ ] 0=

Pe+Pe- = 1–

PfPf 1–=
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momentum and parity of . 

If the final state has relative orbital angular 

momentum lγ, its parity is . Since , the 
parity conservation law requires that

Experimental measurements of lγ confirm (67). 

While (67) can be proved in experiments, it is 
impossible to determine  or , since these 

particles are created or destroyed only in pairs.
− Convention: define parities of leptons as:

(68)

And consequently, parities of antileptons have 
opposite sign.
− Since quarks and antiquarks are also produced
only in pairs, their parities are defined also by
convention:

Pe- Pe+

Pγ
2 1–( )lγ Pγ

2 1=

Pe- Pe+ 1 1–( )lγ=–=

Pe- Pe+

P
e- P

µ- P
τ -= = 1≡
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(69)

with parities of antiquarks being -1.

For a meson M=(ab), parity is then calculated as

(70)

since PaPb= -1. For the low-lying mesons (L=0) that 
means parity of -1, which is confirmed by 
observations.

For a baryon B=(abc), parity is given as

(71)

since PaPbPc=1. For antibaryon , similarly 
to the case of leptons.

For the low-lying baryons (L12=L3=0), Eq. (71) 
predicts positive parities, which is also confirmed by 
experiment.

Parity of the photon can be deduced from the 
classical field theory, considering the differential form 

Pu Pd Ps Pc Pb Pt 1= = = = = =

PM PaPb 1–( )L 1–( )L 1+= =

PB PaPbPc 1–( )L12 1–( )L3 1–( )L12 L3+= =

PB PB–=



Paula Eerola Lund University 114 

Space-time symmetries Particle Physics

of the Gauss’s law:

Under a parity transformation, charge density 

changes as  and  changes its 
sign, so that to keep the equation invariant, the 
electric field must transform as

(72)

On the other hand, the electromagnetic field is 
described by the vector and scalar potentials:

(73)

For the photon, only the vector part corresponds to 
the wavefunction:

Under the parity transformation,

∇ E x t,( )⋅ 1
ε0
-----ρ x t,( )=

ρ x t,( ) ρ x t,–( )→ ∇

E x t,( ) E x t,–( )–→

E ∇φ– ∂A
∂t
------–=

A x t,( ) Nε k( )ei kx Et–( )=
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and from (72) it is obtained that 

. (74)

Comparing (74) and (72), one concludes that parity 
of photon is .

Charge conjugation

�  Charge conjugation replaces particles by
their antiparticles, reversing charges and
magnetic moments 

Æ Charge conjugation is violated by the weak
interaction => absolute sign of electric charge CAN be
defined!

For the strong and electromagnetic interactions, 
charge conjugation is a symmetry:

− It is convenient now to denote a state in a compact

P̂A x t,( ) PγA x– t,( )→

E x t,( ) PγE x t,–( )→

Pγ 1–=

Ĉ H,[ ] 0=
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notation, using Dirac’s “ket” representation: 

denotes a pion having momentum ,

( ). In the general
case,

(75)

Next, we denote particles which have distinct 
antiparticles by “a” (a is the antiparticle of a and vice 
versa). Particles for which particle and antiparticle are 
the same are noted by “α”.

In this notation, we describe the action of the charge 
conjugation operator to particles “α” as:

(76)

meaning that the final state acquires a phase factor 
Cα. The action of the charge conjugation operator to 
particles “a” is

(77)

π+ p,| 〉

p

π+ p,| 〉 ψ= p x t,( ) u p( )ei px Et–( )=

π+Ψ1 π-Ψ2;| 〉 π+Ψ1| 〉 π-Ψ2| 〉≡

Ĉ α Ψ,| 〉 Cα α Ψ,| 〉=

Ĉ a Ψ,| 〉 a Ψ,| 〉=
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meaning that we transformed a particle in the initial 
state into an antiparticle in the final state.

Since a second transformation turns antiparticles 

back to particles, , and the eigenvalue is 

(78)

For multiparticle states the transformation is:

(79)

− From (76) it is clear that particles α=γ,π0,... etc., are

eigenstates of  with eigenvalues Cα=±1. 

− Other eigenstates can be constructed from
particle-antiparticle pairs:

Ĉ2 1=

Cα 1±=

Ĉ α1 α2 … a1 a2 … Ψ;, , , , ,| 〉  =

 = Cα1
Cα2

… α1 α2 … a1 a2 … Ψ;, , , , ,| 〉

Ĉ

Ĉ a Ψ1 a Ψ2,;,| 〉 a Ψ1 aΨ2;,| 〉 a Ψ1 a Ψ2,;,| 〉±= =
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For a state of definite orbital angular momentum, 
interchanging between particle and antiparticle 
reverses their relative position vector, for example:

(80)

For fermion-antifermion pairs theory predicts

(81)

This implies that π0, being a 1S0 state of uu and dd, 
must have C-parity of 1.

Tests of C-invariance

Prediction of  can be confirmed 

experimentally by studying the decay π0→ γγ. The 
final state has C=1, and from the relations

Ĉ π+π- L;| 〉 1–( )L π+π- L;| 〉=

Ĉ ff J L S, ,;| 〉 1–( )L S+ ff J L S, ,;| 〉=

C
π0 1=

Ĉ π0| 〉=C
π0 π0| 〉

Ĉ γγ| 〉=CγCγ γγ| 〉= γγ| 〉
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it stems that . 

 can be inferred from the classical field theory:

under the charge conjugation, and since all electric 
charges swap, electric field and scalar potential also 
change sign:

,

which upon substitution into (73) gives .

To check predictions of the C-invariance and of the 
value of Cγ, one can try to look for the decay

If both predictions are true, this mode should be 
forbidden:

which contradicts all previous observations. 

C
π0 1=

Cγ

A x t,( ) CγA x t,( )→

E x t,( ) E x t,( ) , φ x t,( ) φ x t,( )–→–→

Cγ 1–=

π0 γ γ γ+ +→

Ĉ γγγ| 〉 Cγ( )3 γγγ| 〉 γγγ| 〉–= =
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Experimentally, this 3γ mode have never been 
observed.

Another confirmation of C-invariance comes from 
observation of η-meson decays:

They are electromagnetic decays, and first two 
clearly indicate that Cη=1. Identical charged pions 
momenta distribution in third confirm C-invariance.

η γ γ+→
η π0 π0 π0+ +→
η π+ π- π0+ +→
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SUMMARY

�  Conservation laws stem from symmetries 
and invariance properties. Exact symmetry 
(invariance of the Hamiltonian H under an 
operation, i.e. the operator commutes with H) <=> 
conservation law <=> an observable whose 
absolute value cannot be defined.

�  Invariance under spatial translation <=> 
momentum conservation <=> absolute spatial 
position undefined. 

�  Invariance under rotation <=> angular 
momentum conservation <=> absolute spatial 
direction undefined. 

�  Using “good” quantum numbers L, S and 
J=SP , the spectroscopic notation of a particle is 

.

�  Parity transformation is the transformation 
by reflection. Parity is violated in weak interaction 
=> absolute “handedness” CAN be defined!

�  A particle with a definite orbital angular 

L2S 1+
J
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momentum is an eigenstate of parity with an 
eigenvalue Pa(-1)l.

�  Intrinsic parities of a fermion and an 
antifermion are related, PfPf = -1. Convention: 
parities of leptons/quarks are Pl = Pq = 1. Parities 
of antileptons/antiquarks have opposite sign.

�  For a meson M=(ab), parity is 
. For a baryon 

B=(abc), parity is 
.

�  Charge conjugation replaces particles by 
their antiparticles, reversing charges and 
magnetic moments. Charge conjugation is 
violated by the weak interaction => absolute sign 
of electric charge CAN be defined! 

�  If particle=antiparticle = α (α=γ,π0,... etc.), 
. These particles are 

eigenstates of  with eigenvalues Cα=±1. Other 
eigenstates: particle-antiparticle pairs. 

�  For fermion-antifermion pairs 
.

PM PaPb 1–( )L 1–( )L 1+= =

PB PaPbPc 1–( )L12 1–( )L3 1–( )L12 L3+= =

Ĉ α Ψ,| 〉 Cα α Ψ,| 〉=
Ĉ

Ĉ ff J L S, ,;| 〉 1–( )L S+ ff J L S, ,;| 〉=


