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V. Hadron quantum numbers
Characteristics of a hadron:

1) Mass
2) Quantum numbers arising from space symmetries : J, P, C. Common notation: 

– JP (e.g. for proton: ), or 

– JPC if a particle is also an eigenstate of C-parity (e.g. for π0 : 0-+)
3) Internal quantum numbers: Q and B (always conserved),  (conserved 

in electromagnetic and strong interactions)

How do we know what are quantum numbers of a newly discovered 
hadron?

How do we know that mesons consist of a quark-antiquark pair, and 
baryons – of three quarks?

1
2
---+

S C B̃ T, , ,



Oxana Smirnova Lund University 112 

Some a priori knowledge is needed:

For the lightest 3 quarks (u, d, s), possible 3-quark and 2-quark states will 
be (qi,j,k are u- or d- quarks):

Hence restrictions arise: for example, mesons with S = -1 and Q = 1 
are forbidden

Particle Mass
(Gev/c2)

Quark
composition Q B S C

p 0.938 uud 1 1 0 0 0

n 0.940 udd 0 1 0 0 0

K- 0.494 su -1 0 -1 0 0

D- 1.869 dc -1 0 0 -1 0

B- 5.279 bu -1 0 0 0 -1

sss ssqi sqiqj qiqjqk ss sqi sqi qiqi qiqj

S -3 -2 -1 0 0 -1 1 0 0
Q -1 0; -1 1; 0; -1 2; 1; 0; -1 0 0; -1 1; 0 0 -1; 1

B̃
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Particles which fall out of above restrictions are called exotic particles 
(like ddus , uuuds etc.)

From observations of strong interaction processes, quantum numbers 
of many particles can be deduced:

Observations of pions confirm these predictions, ensuring that pions are 
non-exotic particles.

p + p → p + n + π+ p + p → p + p + π0

Q= 2 1  1 Q= 2 2  0
S= 0 0  0 S= 0 0  0
B= 2 2  0 B= 2 2  0

p + π- → π0 + n
Q= 1 -1 0
S= 0  0 0
B= 1  0 1
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Assuming that K- is a strange meson, one can predict quantum numbers 
of Λ-baryon:

And further, for K+-meson:

All of the more than 200 hadrons of certain existence satisfy this kind 
of predictions

It so far confirms validity of the quark model, which suggests that only 
quark-antiquark and 3-quark (or 3-antiquark) states can exist

K- + p → π0 +Λ
Q=  0 0  0
S= -1 0 -1
B=  1 0  1

π- + p →  K+ + π- + Λ
Q= 0  1 -1
S= 0  1 -1
B= 1  0  1
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Pentaquark observation

In 1997, a theoretical model predicted pentaquark possibility with mass 1.54 GeV

In 2003, LEPS/SPring-8 experiment in Japan reported an observation of a particle 
with precisely this mass, and having structure consistent with pentaquark

Reported Θ+ particle composition: uudds, B = +1, S = +1, spin = 1/2

Figure 43:   Pentaquark production and observation at JLab
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LEPS/SPring-8 experimental setup:

γ + n → Θ+ (1540) + K- → K+ + K- + n
Laser beam was shot to a target made of 12C (n:p=1:1)

A reference target of liquid hydrogen (only protons) showed no signal

Many experiments reported similar observations

New dedicated precision experiments show no signal
Main problem: how to estimate background. Search continues...

Figure 44:   New particle signal (the peak) reported by LEPS
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Even more quantum numbers...

It is convenient to introduce some more quantum numbers, which are 
conserved in strong and electromagnetic interactions:

Sum of all internal quantum numbers, except of Q,

hypercharge Y ≡ B + S + C + + T
Instead of Q :

I3 ≡ Q - Y/2
...which is to be treated as a projection of a new vector:

Isospin 
I ≡ (I3)max

so that I3 takes 2I+1 values from -I to I

I3 is a good quantum number to denote up- and down- quarks, and it 
is convenient to use notations for particles as: I(JP) or I(JPC) 

B̃
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Hypercharge Y, isospin I and its projection I3 are additive quantum numbers, thus 
quantum numbers for hadrons can be deduced from those of quarks:

Proton and neutron both have isospin of 1/2, and also very close masses:

p(938) = uud ; n(940) = udd : 
proton and neutron are said to belong to isospin doublet

B S C T Y Q I3
u 1/3 0 0 0 0 1/3 2/3 1/2
d 1/3 0 0 0 0 1/3 -1/3 -1/2
s 1/3 -1 0 0 0 -2/3 -1/3 0
c 1/3 0 1 0 0 4/3 2/3 0
b 1/3 0 0 -1 0 -2/3 -1/3 0
t 1/3 0 0 0 1 4/3 2/3 0

B̃

Ya b+ Ya Yb ; I3
a b++ I3

a I3
b+= =

Ia b+ Ia Ib Ia Ib 1 … Ia Ib–, ,–+,+=

I J( )P 1
2
--- 1

2
---⎝ ⎠

⎛ ⎞ +
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Other examples of isospin multiplets:

K+(494) = us ; K0(498) = ds : 

π+(140) = ud ; π-(140) = du :  and
π0(135) = (uu-dd)/√2 : 

Principle of isospin symmetry: it is a good approximation to treat u- 
and d-quarks as having same masses

Particles with I=0 are called isosinglets : 

Λ(1116) = uds, 

By introducing isospin, we get more criteria for non-exotic particles: 
sss ssqi sqiqj qiqjqk ss sqi sqi qiqi qiqj

S -3 -2 -1 0 0 -1 1 0 0
Q -1 0; -1 1; 0; -1 2; 1; 0; -1 0 0; -1 1; 0 0 -1; 1
I 0 1/2 0; 1 3/2; 1/2 0 1/2 1/2 0; 1 0; 1

I J( )P 1
2
--- 0( )-=

I J( )P 1 0( )-=

I J( )PC 1 0( )- +=

I J( )P 0 1
2
---⎝ ⎠

⎛ ⎞ +
=



Oxana Smirnova Lund University 120 

In all observed interactions (save pentaquarks) isospin-related criteria are 
satisfied as well, confirming once again the quark model.

This allows predictions of possible multiplet members: suppose we 
observe production of the Σ+ baryon in a strong interaction:

K- + p → π- + Σ+

which then decays weakly :

Σ+ → π+ + n
Σ+ → π0 + p

It follows that Σ+ baryon quantum numbers are: B = 1, Q = 1, S = -1 and 
hence Y = 0 and I3 = 1.

Since I3>0 ⇒ I≠ 0 and there are more multiplet members!
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When a baryon has I3=1, the only possibility for isospin is I=1, and we have a 
triplet:

S+, S0, S-

Indeed, all such particles have been observed:

Masses and quark composition of Σ-baryons are:

Σ+(1189) = uus ; Σ0(1193) = uds ; Σ-(1197) = dds

It indicates that d-quark is heavier than u-quark, under following 
assumptions:

(a) strong interactions between quarks do not depend on their flavour and give 
contribution of Mo to the baryon mass

(b) electromagnetic interactions contribute as , where ei are quark charges 
and δ is a constant

K- + p → π0 + Σ0
Λ + γ

K- + p → π+ + Σ-
π- + n

δ eiej∑
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The simplest attempt to calculate mass difference of up- and down- 
quarks:

M(Σ-) = M0 + ms + 2md + δ/3
M(Σ0) = M0 + ms + md + mu - δ/3

M(Σ+) = M0 + ms + 2mu

⇓

md - mu = [ M(Σ-) + M(Σ0) -2M(Σ+) ] / 3 = 3.7 MeV/c2

NB : this is a very simplified model, as under these assumptions M(Σ0) 
= M(Λ) , while their mass difference M(Σ0) - M(Λ) ≈ 77 Mev/c2 .

Generally, combining other methods: 

2 ≤ md - mu ≤ 4 ( MeV/c2 )

which is negligible comparing to hadron masses (but not if compared to 
estimated u and d masses themselves)
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Resonances

Resonances are highly unstable particles that decay by strong 
interaction (lifetimes about 10-23 s)

If a ground state is a member of an isospin multiplet, then resonant 
states will form a corresponding multiplet too

Since resonances have very short lifetimes, they can only be detected by 
registering their decay products:

Figure 45:   Example of a qq system in ground and first excited states

L=0

I(JP)=1(1-)I(JP)=1(0-)

3S1
1S0

ground state resonance

u d u d

π- + p → n + X 
A + B
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Invariant mass of a particle is measured via energies and masses of 
its decay products (see 4-vectors in Chapter I.):

(78)

Figure 46:   A typical resonance peak in K+K- invariant mass distribution

W2 EA EB+( )2 pA pB+( )2–≡ E2 p2– M2= =
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Resonance peak shapes are approximated by the Breit-Wigner
formula:

(79)

Mean value of the Breit-Wigner shape is the mass of a resonance: M=W0 

Γ is the width of a resonance, and it has the meaning of inverse mean lifetime of 
particle at rest: Γ ≡ 1/τ

Figure 47:   Breit-Wigner shape

N W( ) K
W W0–( )2 Γ2 4⁄+

----------------------------------------------=

WW0

N(W)

Nmax

Nmax/2 Γ



Oxana Smirnova Lund University 126 

Internal quantum numbers of resonances are also derived from their 
decay products:

X0 → π+ + π- 

for such X0:  ⇒ Y=0 and I3=0. 

When I3=0, to determine whether I=0 or I=1, searches for isospin multiplet 
partners have to be done. 

Example: ρ0(769) and ρ0(1700) both decay to π+π- pair and have isospin 
partners ρ+ and ρ- :

By measuring angular distribution of π+π- pair, the relative orbital angular 
momentum of the pair L can be determined, and hence spin and parity of 
the resonance X0 are (S=0): 
                            

B 0  S; C B̃ T 0  Q; 0= = = = = =

π± + p → p + ρ±

π± + π0

J L  P; Pπ
2 1–( )L 1–( )L  C; 1–( )L= = = =
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Some excited states of pion:

B=0 : meson resonances, B=1 : baryon resonances. 

Many baryon resonances can be produced in pion-nucleon scattering:

Peaks in the observed total cross-section of the π±p-reaction correspond to 
resonance formation

resonance I(JPC)
ρ0(769) 1(1- -)

(1275) 0(2++)
ρ0(1700) 1(3- -)

Figure 48:   Formation of a resonance R and its decay into a nucleon N

f2
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} X

N
R

p

π± 
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Figure 49:   Scattering of π+ and π- on proton
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All the resonances produced in pion-nucleon scattering have the same 
internal quantum numbers as the initial state: 

and thus Y=1 and Q=I3+1/2

Possible isospins are I=1/2 or I=3/2, since for pion I=1 and for nucleon 
I=1/2

 I=1/2 ⇒ N-resonances (N0, N+)

 I=3/2 ⇒ Δ-resonances (Δ−, Δ0, Δ+, Δ++)

Figure 49: peaks at ≈1.2 GeV/c2 correspond to Δ++ and Δ0 resonances:

π+ + p → Δ++ → π+ + p
π- + p → Δ0 → π- + p

              π0 + n

B 1  S; C B̃ T 0= = = = =
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Fits by the Breit-Wigner formula show that both Δ++ and Δ0 have 
approximately same mass of ≈1232 MeV/c2 and width ≈120 MeV/c2.

Studies of angular distributions of decay products show that 

Remaining members of the multiplet are also observed: Δ+ and Δ- 

There is no lighter state with these quantum numbers ⇒ Δ is a ground 
state, although observed as a resonance.

Quark diagrams

Quark diagrams are convenient way of illustrating strong interaction 
processes

Consider an example:

Δ++ → p + π+ 

The only 3-quark state consistent with Δ++ quantum numbers (Q=2) is (uuu), 
while p=(uud) and π+=(ud)

I JP( ) 3
2
--- 3

2
---⎝ ⎠

⎛ ⎞ +
=
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Analogously to Feinman diagrams:
arrow pointing rightwards denotes a particle, and leftwards – antiparticle

time flows from left to right

Allowed resonance formation process:

Figure 50:   Quark diagram of the reaction Δ++ → p + π+

Figure 51:   Formation and decay of Δ++ resonance in π+p elastic scattering
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Hypothetical exotic resonance:

Quantum numbers of such a particle Z++ are exotic. There are no resonance 
peaks in the corresponding cross-section, but data are scarce:

Figure 52:   Formation and decay of an exotic resonance Z++ in K+p elastic scattering

Figure 53:   Cross-section for K+p scattering
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Figure 54:   Pentaquark searches status as of October 2005, by Paul Stoler
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