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X. Electroweak unification

 Neutral weak bosons were predicted by the electroweak theory

Modern quantum field theories are gauge invariant theories, i.e. they are 
theories were the main equations do not change when a gauge 
transformation is performed

Gauge transformation: certain alteration of a quantum field variables that leaves 
basic properties of the field unchanged; a symmetry transformation

Figure 159:   The equation y=x2 is symmetric (invariant) under transformation A, i.e. 
it looks the same before and after the transformation
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By requiring that theories are gauge invariant one can in fact deduce
various interactions

 There are several forms of gauge invariance corresponding to different 
interactions

In QED, Schrödinger equation must be invariant under phase 
transformation of the wavefunction (a U(1) transformation):

 x t  ' x t  e
iq x t  x t = (185)

Here  x t  is an arbitrary continuous function, q is electric charge.

If a particle is free, then

i

t
------- 1

2m
------- 2–= (186)

 Transformed wavefunction ' x t  can not be a solution of the 
Schrödinger equation (186) since it leads to extra q-dependent terms:



i
'
t

-------- 1
2m
-------  iq+ 2 2mq


t
-------– '=

i

t
------- 1

2m
-------  qA– 2 q+ =
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(187)

 Gauge principle: to keep the invariance condition satisfied, a minimal 
field should be added to the Schrödinger equation, i.e., an interaction
should be introduced

Recall that electric field is:

Gauge transformation corresponds to an interaction that changes the 
potentials in such a way that ensures invariance:

 and 

The gauge-invariant Schrödinger equation is then:

(188)

E – A
t
------–=

A A' A +=  '  
t
-------–=
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The unified electroweak theory was introduced in 1960-ies by Glashow, 
Weinberg and Salam

 It is a quantum field theory, details of which are outside this course’s 
scope - we will focus on its predictions

 The theory introduces weak isospin (I3
W) and weak hypercharge (YW) 

which are related to the electric charge Q as: Q=I3
W+YW/2

 It also introduces massless gauge particles (W+, W-, W0 and B0) that 
interact with massless fermions in order to make the theory 
gauge-invariant

 In QED, transition from one electron state to another with different phase, e-
 e-

, 
demands emission (or absorption) of a photon: e-  e-

 Electroweak theory generalizes it to transformations like:

which leads via the gauge principle to interactions:

e
- e e e

- e
-

e
- e e



e
- eW

- e e
-
W

+ e
-

e
-
W

0 e eW
0
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 W+, W-, and W0 are corresponding spin-1 gauge bosons

While W+ and W- are the well-known (though massive) charged currents, 

W0 as such has not been observed experimentally

 Theory of weak interactions only by means of Wbosons leads to 
divergence: cross-sections of processes involving two W bosons grow 
infinitely with 

Figure 160:   Examples of divergent processes

e+

e-


W-

W+

e+

e- W-

W+

e 





increasing energy



Oxana Smirnova Lund University 289 

 A “good” theory (such as QED) must be renormalizable: all 
expressions can be made finite by re-expressing them in a finite 

number of physical parameters (like e, me and h in QED)

 Electroweak theory is actually renormalizable, though demonstration of it is highly 
non-trivial

 Introduction of Z0 boson fixes the divergence problem: Z0 can couple 
to two W bosons and thus cancel the divergence

Figure 161:   Additional processes to cancel divergence
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 The divergence can also be cancelled by introducing a “heavy electron”, but 
experimental evidence unambiguously favors Z0

 Introduction of neutral bosons makes electroweak theory gauge-invariant
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Rules for Z0 boson vertices:

Conserved lepton numbers

Conserved quark flavour (remember, in W vertices, quark flavour is not conserved)

d'd'Z0 s's'Z0+ d C s Csin+cos  d C s Csin+cos Z0+=

+(-dsinC s C  d C s Ccos+sin– Z0=ddZ0 ssZ0+cos+

 By applying quark-lepton symmetry and assuming there is quark mixing:

 Therefore, it is actually not necessary to apply quark mixing in Z0 vertices

Figure 162:   Basic vertices for Z0-lepton and Z0-quark couplings
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Experimental test of flavour conservation at Z0 vertex: 

Figure 163:   Decay (a) is allowed; decay (b) – forbidden
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 Experiments E787 and E949 at the Brookhaven National Laboratory 
(BNL): a dedicated rare kaon decay experiment

K+ beam (created by 24 GeV protons from the AGS accelerator) is 
deposited onto a fixed target

Measured upper limit on the ratio of the decay rates is:

 K+ + l l+ + 
l


 K+ 0 + + + 
------------------------------------------------------------- 7 8 10

11–=



Figure 164:   Picture of a rare event in E787 (a single pion track). Only 7 such events 
have been observed by E787/949.
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Other experiments looking for the same decay: J-PARC KOTO (KL, running), 
CERN NA62 (under construction, start in 2014), FNAL ORKA (R&D)

With this rate, the observed decays can not be due to the flavor-violating Z0 
decays



Figure 165:   Second-order charged interactions that can explain the observed rare 
kaon decays. 

Oxana Smirnova Lund University 293 

 Thanks to the t-d vertex in the third diagram above, one can estimate the Vtd 
element of the CKM matrix:

0.007 Vtd 0.030 

Unification condition and boson masses

 Comparing vertices involving , W±and Z0, one can conclude that they 
are not independent and can be expressed via the same coupling 
constant
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For a consistent electroweak theory, two conditions are introduced:

 The unification condition relates coupling constants em, gw and gz:

 em

2
------------------ gW Wsin gZ Wcos= = (189)

here W is the weak mixing angle, or Weinberg angle:

Wcos
MW
MZ
---------= (190)

 The anomaly condition relates electric charges of leptons and quarks:

Ql 3 Qq
q
+

l
 0=  (191)

GF

2
-------

gW
2

MW
2

--------- MW
2

gW
2 2

GF
---------------

em

2GF 2
Wsin

---------------------------------= = =

In the zero-range approximation for heavy bosons (see also Eq.(169)):

(192)



GZ

2
-------

gZ
2

MZ
2

--------=
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If we introduce also the neutral current coupling (in low energy 
zero-range approximation, as usual):

(193)

the weak mixing angle can then be expressed through:

GZ
GW
--------

gZ
2

gW
2

-------
MW

2

MZ
2

--------- 2
Wsin= =

2
Wsin 0.227 0.014=

MW 78.3 2.4 GeV/c2  MZ; 89.0 2.0 GeV/c2= =

(194)

From measurements of rates of charged and neutral currents reactions,

which allowed to predict masses of W (using Eq.(192)) and hence Z0, as:



2
Wsin 0.23116 0.00012=
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The most precise result (at Z0 pole):

(195)

However, the most precise value for mass ratio is somewhat different:

The difference comes from higher-order diagrams, e.g. loops:

Figure 166:   Examples of higher order contributions to inverse muon decay
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From higher order corrections, the prediction for the top-quark mass was:

mt 170 30 GeV/c2= (196)

Direct observation gives the value of mt 173 07 0 88 GeV/c2=

 Predictions for W, Z and top masses were the most impressive successes of the 
electroweak theory

 In any process in which a photon is exchanged, a Z0 boson can be 

exchanged as well; in addition, Z0 couples to neutrinos:

Figure 167:   Z0 and  couplings to leptons and quarks
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Example: reaction e+e-has two dominant contributions:

Figure 168:   Dominant contributions to the e+e- annihilation into muons
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With simple dimensional arguments one can estimate the cross section 
for the photon- and Z-exchange process at low energy:


2

E
2

------ Z GZ
2

E
2 (197)

From Eq.(197), ratio of Z and  is:

Z

------ E

4

MZ
4

-------- (198)
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At low energies, photon exchange dominates. At high energies (E=MZ), 
this low-energy approximation fails.

Figure 169:   Total cross sections of e+e- annihilation 
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 Z0 peak is described by the Breit-Wigner formula:

 e
+

e
-

X 
12MZ

2

ECM
2

------------------
 Z

0
e

+
e

-  Z
0

X 

ECM
2

MZ
2

– 
2

MZ
2Z

2
+

---------------------------------------------------------------= (199)

Here Z is the total Z0 decay rate, and Z(Z0  X) are decay rates to 
other final states.

Height of the peak (at ECM=MZ) is then proportional to the product of 
branching ratios:

B Z
0

e
+

e
- B Z

0
X 

 Z
0

e
+

e
- 

Z
-----------------------------------

 Z
0

X 
Z

--------------------------- (200)

Fitted SM parameters of the Z0 peak:

MZ 91.1874 0.0021 GeV/c2=

Z 2.4961 0.0010 GeV=
(201)
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 Fitting the peak with Eq.(199), not only MZ and Z can be found, but also partial 
decay rates:

 Z
0

hadrons  1.7426 0.0010 GeV=

 Z
0

l
+

l
-  0.084005 0.000015 GeV=

(202)

(203)

 Decays Z0  l+l- and Z0  hadrons account for only about 80% of all 

Z0 decays

 Remaining decays are those containing only neutrinos in the final 
state

Z  Z
0

hadrons  3 Z
0

l
+

l
- ++=

+N Z
0 ll 

(204)

From Eqs.(201)-(203):

N Z
0 ll  0.498 0.009 GeV=
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Decay rate to neutrino pairs is calculated from diagrams of Figure 167:

 Z
0 ll  0.166 GeV= (205)

which means that N3. More precisely, from SM fits to LEP data,

N 2.984 0.008= (206)

 There are no explicit restrictions on 
number of generations in the SM

 However, analysis of Z0 line shape 
shows that there are 3 and only 3 kinds of 
massless neutrinos.
 If neutrinos are assumed to have negligible 

masses w.r.t. Z0, there must be only 3 
generations of leptons and quarks in the SM



 B
0 Wcos W

0 Wsin+=

Z
0

B
0 Wsin– W

0 Wcos+=

l x t  l' x t  e
igZyl x t 

l x t =
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 Electroweak unification regards both Z0 and  as mixtures of W0 and 

yet another neutral boson B0:

(207)

The corresponding gauge transformation is:

(208)

here l stands for electron or neutrino and yl are corresponding constants

Introduction of B0 leads to extra vertices

e
-

e
- B

0 e eB
0

:

with new couplings gZy
e

-  and gZye
. If the unification condition (189) is 

satisfied, first mixture in (207) indeed has the coupling of a photon.
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 Generally, experimental data agree very well with gauge invariant 
electroweak theory predictions

 But gauge invariance implies that spin-1 bosons have zero masses if 
they are the only bosons in the theory (photon and even gluon nicely 
comply with this requirement)



one more field should exist!



Oxana Smirnova Lund University 305 

The Higgs Boson

 The scalar Higgs field (introduced in 1964) solves the problem by 
implying a yet another SM particle, the Higgs boson:

Higgs field has a non-zero value  in vacuum

The filed has a corresponding Higgs boson H0 which is a spin-0 particle

Figure 170:   Comparison of the electric and Higgs fields

 The vacuum value 0 is not gauge invariant  hidden gauge invariance, or 
spontaneously broken symmetry

 Vacuum hence is supposed to be populated with massive Higgs 
bosons  when a gauge field interacts with the Higgs field it acquires 
mass (e.g. W and Z bosons become massive)
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 In the same manner, fermions acquire masses by interacting with 
Higgs bosons:

Figure 171:   A basic vertex for Higgs-fermion interactions

H0 gHff

f

f

The coupling constant is related to the fermion mass:

gHff
2

2GFmf
2

= (209)

 The mass of the Higgs itself is not predicted by the theory, only its 
couplings to other particles are predicted (as in Eq.(209))

 There are other ways to satisfy the gauge invariance requirements, but they are 
less elegant and produced no experimental proof (yet)
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Possible signatures of Higgs

a) If H0 was much lighter than Z0 (MH50 GeV/c2), then Z0 could decay by

Z0  H0 + l+ + l- (210)

Z0  H0 + l + l (211)

But the branching ratio would be very low:

3
6–10

 Z
0

H
0
l
+

l
- 

tot
---------------------------------------- 10

4– 

With the large LEP statistics, they still could have been detectable; since 
the reactions (210) and (211) have not been observed, the lower limit set 

by LEP1 was MH>58 GeV/c2
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b) If H0 is significantly heavier than 60 GeV/c2, it can be produced in e+e- 
annihilation at higher energies:

e+ + e-  H0 + Z0 

Figure 172:   “Higgsstrahlung” in e+e- annihilation
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(212)

 In such a reaction, Higgs with mass of up to 90 GeV/c2 could have been detected 
by observing H0 decaying into a bb pair (74%) and Z to a qq pair (70%) - 4 jets, 
of which 2 are b-tagged

 In the closing days of LEP, ALEPH experiment reported a couple of such 
candidate Higgs events. Other experiments saw no events of this kind.

The final lower limit established by LEP is:

MH 114.4 GeV/c2 (213)
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SM fit to electroweak parameters measured at LEP was quite good at 
predicting Higgs mass:

Figure 173:   Fit of the Higgs mass made by DELPHI in 2008
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c) Higgs with masses up to 1 TeV can be observed at the LHC:

p + p  H0 + X (214)

where H0 is produced in electroweak interaction between quarks or 
gluons, e.g.

Figure 174:   Examples of Higgs production processes at LHC

:



Figure 175:   Predicted Higgs production cross sections at LHC
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 Gluon fusion is the dominant production process
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Due to the heavy background, good signatures have to be considered:

 If MH > 2MZ, then the dominant decay modes would be:

H0  Z0 + Z0 (215)

H0  W- + W+

Figure 176:   Branching ratios for the main decays of the SM Higgs boson
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The most clear signal is when both Z0 decay into electron or muon pairs:

H0  l+ + l- + l+ + l- (217)

This will mean 200 GeV/c2 MH 500 GeV/c2, but only 3% of all decays

 It is also possible to use the 4-lepton channel if MH < 2MZ , but then one of the 
Z0 will be virtual

 If MH < 2MW, the dominant decay mode (~57%) is

H0  b + b (218)

but this gives indistinguishable signal at LHC. Another mode is

H0 

Figure 177:   Dominant mechanisms for the decay (219)
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 Branching ratio of this kind of processes is about only 0.23%, but easy to observe
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 A strong signal at ~125 GeV was reported by ATLAS and CMS 
experiments at LHC on July 4, 2012 

Figure 178:   First ATLAS Higgs results in 2-photon and 4-lepton channels
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Current Higgs mass values measured at LHC in different channels:

 ATLAS, 4-lepton: MH = 124.3+0.6
-0.5

+0.5
-0.3 GeV

 ATLAS, 2-photon: MH = 126.8 GeV±0.2±0.7 GeV

CMS, 2-photon: MH = 125.4 GeV±0.8 GeV

Other channels also show signals in the same area, but require more data

 Analysis of angular distributions favours spin 0 and parity +1 (JP=0+)

 There is also evidence of couplings to fermions, compatible with SM 
predictions

 The neutral Higgs is a minimal SM requirement; there might exist 
more complicated variants, including charged higgs-particles. 



Figure 179:   Summary of SM constituents and couplings
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