Xl. Neutrino physics

Neutrinos are perhaps the least understood SM particles due to the very
small cross sections of their interactions.

“ In the Standard Model, neutrinos are massless and always
left-handed, couple to weak bosons W and Z

However, observed neutrino oscillations prove that neutrinos do have mass

s+ Some open questions are:

What are neutrino masses and do
they contribute to the Dark Matter?

Is neutrino its own antiparticle?

Do neutrinos violate CP leading to
matter-antimatter asymmetry?

What are neutrino mixing parameters?
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Neutrino sources:
The Sun

Cosmic rays (“atmospheric
neutrinos”)

proton

Secondary accelerator beams
Nuclear reactors

Natural radioactivity
Supernovae

The Big Bang
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Neutrino masses

ldea behind experiments: if neutrinos have non-zero masses, they
must be subject to neutrino-mixing

Recall: quark mixing in weak interactions
d = dcos® -+ ssinb -

s = —dsin9c+ SCOSOC

By analogy, neutrinos can be represented as linear combinations:

Ve V]COSOL VZSZI’ZOL

(220)

VH =~V sina + V,cosa

Here v; and v, are mass eigenstates with masses m; and m, (v, and v,
are flavor eigenstates)

For neutrinos, flavor eigenstates do not coincide with mass
eigenstates!
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Figure 180: Flavor eigenstates of neutrinos are superpositions of three
mass eigenstates

Mixing angle o is determined from experiments that observe neutrino
oscillations

Neutrino oscillation: a beam of v, develops v,, component as it travels
through space, and vice versa
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In Dirac notation, the initial superposition is (for 2 eigenstates):
v, D) = cosalv, p)+ sinov., p) (221)

and after a period of time ¢ it evolves to:

> — . >
e cosa|v,, p)te Sinalv,, p) (222)

IE.t T : T .
here ¢ 7 are oscillating time factors (recall strangeness oscillation in
Section V.)

Form (222) is not a pure v, state anymore, but a mixture:
A(D)lvy D)+ BV, D) (223)

where the v, states are, similarly to (221):

|VH’ ]3) = —Sinoc|v],fo) + cosoc|v2,f?) (224)

The functions 4(#) and B(t) hence are:
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iE]t 2 —iE2t .2
cos o t+e Sin o

B(t) = Sinoccosoc[e_iEZI— e_iElt]
Squares of A(z) and B() are probabilities to find v, (respective v,) in a
beam of electron neutrinos v,
P(v,—>v,) = A2 = 1 —P(v,—>V) (226)
L(E,—E )t
2
If neutrinos have equal (zero) masses = E{=E, = no oscillations

A(t) = e 225)

P(v,—>v,) = IB()|? = sin?(2a)sin (227)

For E>>mand Am?2 2_m? E

5] =m5—my, —E]E(Amgl)/@E):

2

2
Am_L) (228)

_ o2 . 2
P(ve—>v“) sin“(2a)sin ( T
Here Am’ and o (better known as 6,;) are measured, while £ and L are

experiment parameters
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If mass eigenstates have different masses, they travel at different
speeds (assuming the energy is the same)

Probability to detect a neutrino of a given flavor depends on the
distance travelled

In general, for 3 flavors, a 3x3 matrix must be used (similarly to CKM):

V.

T

3-D complex rotation

Ve \ Uel UeZ Ue3 Vl
w |~ Uul Uu2 Uu3 Vs
Uny U, Ugs vy

E. Falk

Figure 181: Flavor eigenstates are a “rotation” of mass eigenstates

Matrix in Fig.181 is called Upyns (Pontecorvo-Maki-Nakagawa-Sakata)
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Two-neutrino oscillations
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Figure 182: Electron (anti)neutrino survival probability
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Three-neutrino oscillations

The PMNS matrix can be decomposed into four components

Three 2-dimensional rotation matrices, each characterised by different mixing

angle
The last one (U, Mgj) does not correspond to oscillations
Three independent mixing angles CP-violation (229)
phase

1 0 0 cos 6, @ cos6,, s O

—_ q diag
e " 0 SlIl@12 COS 12 0| x Uy
. 4 —idcp o
0 -sinf,; cost,) |(—e "<sinfd, COS 813 1

Measured from Sub-dominant Measured from
= atmospheric and oscillations, measured in Solar and
LCE accelerator reactor and accelerator reactor neutrinos
W neutrinos experiments
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Mass hierarchy

As of today, we know that v, has higher mass than v,

We however don't know yet whether 1 is the heaviest or the lightest

Normal hierarchy Inverted hierarchy
v
Vs I ’ T T
A IAm221
Vi T
Am?2,, 1
mass)? 2
) " e

Q) | ——— R
Am?2 | ®
v, —:-I v, EE o =
Ly

Figure 183: Two possible mass hierarchies: normal and inverted
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Tests of neutrino oscillations

Methods to detect neutrino oscillations:

Appearance search

Disappearance test

v, and v, can be distinguished by their interaction with neutrons:
former produce electrons and latter - muons:

V,Th—>e Tp
V u tn—>u tp
Cherenkov detectors can tell electron from muon

Time ¢ in (227) can be determined from the distance between the
detector and the source of neutrinos
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Atmospheric neutrino anomaly

Was first detected in 1980’s: instead of predicted N(v,)~2N(v,), rates of
both neutrinos were approximately equal

Super-Kamiokande detector: measures rates and flavours of
neutrinos coming both from zenith and nadir

A neutrino created in cosmic rays travels ~15 km in the atmosphere = has no
time to oscillate (proven by other experiments)

A similar neutrino created on the other side of the Earth travels *13000 km =
has good chances to oscillate

If ratio of v¢ and v, is different in two cases above = there are oscillations = at
least one neutrino is massive.

The detector is placed in a deep mine to reduce the background

— 50 000 m? of water and 13 000 photomultipliers work as the Cherenkov detector
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Figure 184: Neutrino oscillations through Earth seen by Super-Kamiokande
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Figure 185: Schematics of the Super-Kamiokande detector
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Figure 186: Interior of the Super-Kamiokande detector (April 2006, filling with water
after full reconstruction)
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In 1998, the Super-Kamiokande Collaboration announced:

a) 4654 observed events — by far the largest statistical sample back
then (much more data collected now)

b) data exhibit zenith angle dependence of v, deficit

c) hence the “atmospheric neutrino anomaly” can only be explained
by oscillations v W Ve which leads to muonic neutrino deficiency

In cosmic rays.

d) the v, <> v, mixing angle and neutrino mass difference Am from

atmospheric neutrino studies are currently estimated at
0,; = (45+7)°
; (230)
Am? = 2.4x10 ~ eV?
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Figure 187: Zenith angle distributions, Super-Kamiokande |
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Solar neutrino problem

Figure 188: “Portrait” of the Sun in neutrinos (by Super-Kamiokande)

Several methods are used to detect solar neutrinos of different energies:
Ve +3'Cl>e +3"Ar
Ve + Mo - e+ PFTc

ve+tGa> e +1Ge
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Experimental installations typically are tanks filled with corresponding
medium and placed underground

processing room

Nzl
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Homestake gold mine chlorine detector GALLEX detector under the
(data taking in 1969-1993, USA) Gran Sasso mountain (ltaly),

data taking in1991-1997

Figure 189: Layouts of first solar neutrino detectors
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Solar neutrino flux is measured in SNU (“solar neutrino unit”):

1 SNU =1 capture / 1 second / 1036 target atoms
“Solar neutrino problem” (SNP).

For the Homestake detector, predicted neutrino flux is 7.3 + 2.3 SNU,
measured 2.6 +0.2 SNU

GALLEX: predicted 129 + 8 SNU, measured 77.5 £ 8 SNU

Reactions producing solar neutrinos are:
Np+p—>?H+e" +vy E,ma=0.42MeV (85%)
2)e+'Be > Li+vy Eyax=0.86 MeV (15%)
3)°B>%Be+e" +vy E,ma=15MeV (0.02%)

GALLEX measures all of them, Homestake — only the last one.

Neutrino oscillations seemed to be the most appealing explanation,
although there were many other hypotheses
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Sudbury Neutrino Observatory (SNO)

A Cherenkov counter

Used heavy water and could detect all
three kinds of neutrinos

Data taking from 1999 to 2006,
upgrading to SNO+ now

In 2001, produced the first evidence of
oscillations in solar neutrinos, which

effectively solved
the SNP

Figure 190: Sudbury Neutrino
Observatory layout (2km
underground)
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SNO was measuring three kinds of neutrino-induced reactions:

Charged current: v, + d —p + p + €7, sensitive to v, Cherenkov light is
used to detect electrons

Neutral current: v, + d —p + n + v,, sensitive to all v, breaks up deuterium;
neutron capture produces gamma-rays WhICh scatter detectable electrons

Electron scattering: v,, + e — v, + e, sensitive to all v, but dominated by v,
SNO neutral current flux measurement (all neutrino flavors):

measured
fot = 1.01+0.12
expected
tot
Charged current (only v,):
(I)measured
= 0.35£0.02
(I)expected

This confirmed that the Solar model is correct, and there are neutrino
oscillations
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Figure 191. KamLAND detector (liquid scintillator, data taking since 2002) and the
combined SNO and KamLAND (neutrinos from a reactor) fit

Oxana Smirnova Lund University 339



Survival Probability

0.8

0.6

0.4

0.2

—
| — 3-v best-fit oscillation —— Data - BG - Geo V,
IS 2-v best-fit oscillation
| I l | | l | | l I l I l I l | | l - l | |
20 30 40 50 60 70 8 90 100 110

Ly/E, (km/MeV)

Figure 192: Electron antineutrino survival probability as measured by KamLAND.

Antineutrinos from 26 reactors in the radius of 140-210 km are detected
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Long-baseline experiments

Accelerators can create high-intensity neutrino beams and direct them
towards detector installations
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Figure 193: Scheme of the CERN to Gran Sasso (732 km away) neutrino beam

Detector closer than 1km: short-baseline; NOMAD and CHORUS at CERN were
800 m away and found no signal

Long-baseline: beam shot through Earth to a detector hundreds of kilometers
away
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Target Service MINOS To Soudan
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Figure 194: NuMI| beam of v, is shot from Fermilab (IL) to the MINOS experiment
in Soudan (MN) mine 735 km away. Takes data since 2005.

Two detectors (near and far) are used in a disappearance experiment
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New reactor experiments, focus on 03:
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Appearance experiments

Appearance experiments are more challenging, but provide the
necessary complementary measurements. Use either scintillators or
Cherenkov detectors.

OPERA - in Gran Sasso, looks for appearance of
tau neutrino in muon neutrino beam, takes data
since 2006

T2K - Super-Kamiokande, appearance of electron
neutrino in the beam (295 km from J-PARC), takes
data since 2010

= © NOvA experiment - same basic setup as NuMI/
] ”'3 Soudan, but different detectors, ~2 degrees off the
/{]| beam axis to enhance the signal (like T2K),

\'# appearance of electron neutrino. Should start taking

data very soon now.
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Extra-galactic neutrinos

Detection of neutrinos from supernovae can provide information about
neutrino mass

Simultaneous observation of neutrinos from the SN1987a on
February 23, 1987 by two experiments (IMB and Kamiokande) set the
upper limit of neutrino mass at 20 eV

Figure 195: SN1987a as seen by the Hubble Space Telescope in 1994
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Figure 196: AMANDA (left, runs since 1996) and IceCube (right) neutrino

telescopes at the South Pole. So far detected 28 candidates.
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+» Neutrino telescopes look for extra-Solar-system neutrinos and cover
very large areas (1 cubic kilometre for lceCube)

» Located in (sometimes frozen) water bodies: lakes, seas - and consist
of strings of PEMs to detect Cherenkov light

“» Some other neutrino telescopes:

Baikal (since 1993)
In Mediterranean: ANTARES (since 2006), NESTOR (since 2003)
© KM3NEeT - to be constructed in Medlterranean in 3 locations (prototype: NEMO)
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Is neutrino its own antiparticle?

Can neutrino be its own antiparticle, violating lepton number
conservation?

Recap: neutrinos are always relativistic, hence left-handed (antineutrinos
- right-handed); moreover, antineutrinos have opposite sign of lepton
guantum numbers

Neutral particles may or may not have antiparticles:

v, 70 , ¥ have no antiparticles (all are bosons)
KY , 1 have antiparticles (n is a fermion)

Neutron is a Dirac fermion (has an antiparticle). Majorana fermions have
no antiparticles, but never been observed yet.

If neutrinos have mass, then right-nanded neutrinos are possible:

Dirac neutrino: v|, vg and vg, v
Majorana neutrino: only vi and vg and no lepton number conservation
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The so-called “see-saw mechanism” combines Dirac and Majorana
terms, leading to extremely light v| and extremely heavy vi

May explain why v are so light

Majorana neutrino signature: neutrinoless double beta decay

Double beta decay requires even-even nuclei; only 35 isotopes known, all with
half-lifes longer that the Universe age

3
YYY
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©

Figure 197: Process (a) is allowed for both Dirac and Majorana neutrinos;
process (b) - only for Majorana
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To detect a signal, one has to:

Chose a good isotope

Know your background (as usual in neutrino experiments)

Get a good detector

©NEMOS3 experiment is currently
collecting data (in the Frejus road
tunnel under Alps)

©Planned experiments: SNO+,
SuperNEMO, CUORE,
KamLAND-Zen

©No sign of Majorana neutrinos yet...
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Summary of most recent neutrino oscillation parameters

Parameter Best-fit value (+710)
Am3, [1072eV?] 7.54+0.26
|Am?| [1073eV?] 2.43+0.10
sin’0 0.307 +0.018
sin®0 55 0.386 + 0.024
sin’0 0.0241 + 0.0025

Here Am? = mg—(m§+m§)/2
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Figure 198:
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Summary of current knowledge about neutrino mass and flavor
eigenstates
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