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IX. Weak Interactions: W and Z bosons

 Like in QED and QCD, the weak force carriers are spin-1 bosons; they
couple to quarks and leptons

Weak interactions are carried out by three intermediate vector bosons: 
W+ and W- (mass 80.4 GeV), and Z0 (91.2 GeV)

 Since these bosons are very massive particles, weak interactions have very 
short range (order of 2 ×10-3 fm)

Historically, all observed weak processes were charged current reactions 
mediated by W+ or W- bosons (like -decay) . Electroweak theory predicted 
existence of neutral current reactions caused by the Z0 boson

Figure 127:   Predicted neutral current reaction: no muon in the final state
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Figure 128:   One of the first neutral current reactions as seen by the Gargamelle 
bubble chamber in 1973
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Brief history of the W and Z bosons discovery

 First dedicated study of vector bosons: detectors UA1 and UA2 at the
proton-antiproton collider SPS (Super Proton Synchrotron) at CERN
(started in 1981)

 Search for leptonic decays of the W and Z bosons produced in pp collisions:

(155)

(156)

(157)

W and Z can decay into quarks as well, but in hadron collisions this can not be 
identified

p + p  W++ X 
l+ + l

p + p  W-+ X 
l- + l

p + p  Z0+ X 
l+ + l-
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From the quark point of view, processes (155)-(157) are quark-antiquark
annihilations:

u + d  W+ , d + u  W- (158)

u + u  Z0 , d + d  Z0 (159)

To obtain sufficient centre-of-mass energies for quark-antiquark collisions
(~90 GeV), proton and antiproton beams at SPS had an energy of
270 GeV each.

Figure 129:   The mechanism of W± and Z production in pp annihilation
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W bosons

 Signature of a W boson:
– a lepton with large momentum ( p(l)>10 GeV/c ) is emitted at a wide angle to 
the beam ( >5 )
– large “missing transverse momentum” ( pT=psin carried away by neutrino

Figure 130:   A W boson observed by UA1 detector in 1982; a high transverse 
momentum electron is indicated by the arrow
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Neutrinos can not be detected, but we know that in a symmetric collision, sum of 
all the momenta must be 0. Events with large missing momentum (>15 GeV in 
UA1) indicate presence of energetic neutrinos

If pT(W)=0  : the missing transverse momentum is equal to
the transverse momentum of the detected lepton

From 43 events observed by UA1, the mass of W+ and W- was defined
as

(160)

and the decay width as
(161)

which corresponds to the lifetime of 3.2 ×10-25 s

 Branching ratios of leptonic decay modes of Ware about 11% for each lepton 
generation

pT = pT(l)

MW 80.33 0.15 GeV/c2=

W 2.07 0.06 GeV=
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W bosons can be pair-produced in e+e- annihilation, and the up-to-date
world average for the W mass is

(162)

Figure 131:   A later result from the D0 experiment at the Tevatron (also 
proton-antiproton collisions); fit gives MW=80.48 0.09 GeV
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Z0 boson

 Signature of a Z0 boson in pp collision: pair of leptons (e+e-) with very
large momenta.

 Mass of the Z0 then equals to the invariant mass of leptons

Figure 132:   A Z0 production event in the UA1 detector. 
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Knowing MW, the mass of Z0 was predicted to be MZ90 GeV/c2

 From the first 18 electron and 10 muon events measured by UA1:

(163)

More precise methods and new data from e+e- collisions at LEP give 

(164)

which corresponds to the lifetime of 2.6×10-25 s.

 Branching ratios of leptonic decay modes of Z0 are around 3.4% for each lepton 
generation

Figure 133:   Dilepton mass spectra near the Z0 peak at Tevatron
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Charged current reactions

 Charged current reactions are weak interactions mediated by the
charged W bosons:
1) purely leptonic processes: -  e- + e +  

2) purely hadronic processes:  + p

W-



e-

e



d
u

s
u
d u

u
d

W-





p

d
u

d
s
u d

u
u

W-

p






Oxana Smirnova Lund University 254 

3) semileptonic reactions: n  p + e- + e

 Reminder: all the electromagnetic interactions can be built from eight
basic interactions:

Figure 134:   The basic vertex for electron-photon interactions
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 In a similar way, leptonic weak interaction processes can be built from
a certain number of reactions corresponding to basic vertices:

 Weak interactions always conserve lepton quantum numbers

Diagram-wise this conservation is guaranteed by:

at each vertex, there is one arrow pointing in and one pointing out

lepton indices “l” are the same on both lines

Figure 135:   The two basic vertices for W-lepton interactions

l l-

W

l l+

W

(a) (b)
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a) l l- + W+ b) W+ l l-

c) l+  W+ + l d) W-+ l+  l

e) l+ + l W+ f) W- l- + l

g) vacuum  l- + l + W+ h) l+ + l + W-  vacuum

Figure 136:   Eight basic weak current reactions

l

W
+

l- l

W
-

l-

l+

W
+

l

W
-

l+

l

l

l+

W
+

W
-

l-

l

l-

W
+

l

l

W
-

l+



Oxana Smirnova Lund University 257 

 Processes of Figure 136 are virtual, so that two or more have to be combined to 
conserve energy

However, processes like in Fig.136(e) and 136(f) do not violate energy 
conservation if

MW > Ml + Ml (l = e, , )

 In particular, reactions 155 and 156, used to detect the W bosons, are dominated 
by mechanisms shown in Fig.136(e) and 136(f).

 Leptonic vertices are characterized by the corresponding strength
parameter W independently on lepton type involved

Figure 137:   Vertices violating lepton number conservation (forbidden)
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Knowing the decay rate of W e, one can estimate W to the first
order:

 Since the process involves only one vertex and lepton masses are negligible 
(165)

Measured decay rate:

(166)

which gives
(167)

hence the “strength” of the weak interaction is comparable with the
electromagnetic one

 Weak interaction is still much weaker at low energies E<<MW

 W e  WMW 80W GeV

 W e  0.2 GeV

W 1 400 O em =
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Analogues of electron-electron scattering by photon exchange:
 + e-  + e (168)

 Time ordering implies changing the sign of the current!

 A conventional muon decay is depicted involving W- :

(a) (b)

Figure 138:   Time-ordered diagrams for inverse muon decay (168)

Figure 139:   Dominant diagram for muon decay
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Including higher order diagrams, inverse muon decay (168) can look like:

 A diagram like Fig.140 gives a negligible contribution of order  to the total 
cross section, analogously to the case of electromagnetic photon exchange 

Since W bosons are very heavy, at E<<MW interactions like (168) can be
approximated by a zero-range interaction:

Figure 140:   Some higher order contributions to inverse muon decay 

Figure 141:   Low-energy zero-range interaction in muon decay
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 Taking into account spin effects, the relation between W and GF in
zero-range approximation is:

(169)

where gW is the coupling constant in W-vertices,  by

definition.

This gives the estimate of W=4.2×10-3=0.58 emwhich is perfectly
compatible with estimate (167)

W is indeed slightly smaller than  em in the low energy 
approximation

 Weak interaction rates are only small at low energies, because the
very large MW enters (169) as the inverse square

GF

2
-------

gW
2

MW
2

---------
4W

MW
2

---------------= =

W gW
2 4
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 Weak interactions of hadrons: constituent quarks emit or absorb W
bosons

 Lepton-quark symmetry: corresponding generations of quarks and
leptons have identical weak interactions:

Figure 142:   Neutron -decay
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The coupling constants do not change upon exchange of quarks/leptons:
(170)

An example of an allowed reaction:
  (du  ) (171)

 However, some observed reactions are not consistent with the
lepton-quark symmetry:

K-  (su ) (172)

(branching ratio of this process is 0.63 - quite a common decay)

Figure 143:   W-quark vertices assumed by lepton-quark symmetry
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To solve the contradiction, the “quark mixing” hypothesis was introduced
by Cabibbo:

 d- and s-quarks participate the weak interactions via the linear
combinations:

(173)

Parameter C is called Cabibbo angle

Figure 144:   Dominant quark diagrams for  decay

d
u

s
u
d u

u
d

W-





p

d
u

d
s
u d

u
u

W-

p




d' d C s Csin+cos=

s' d C s Ccos+sin–=



Oxana Smirnova Lund University 265 

 Quark-lepton symmetry applies to doublets like

Quark mixing hypothesis allows some more W-quark vertices:

(174)

(175)

Figure 145:   Interpretation of quark mixing
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Cabibbo angle is not given by the theory and has to be measured
experimentally, for example, comparing decay rates:

which corresponds to
(176)

Figure 146:   Additional W-quark vertices assumed by lepton-quark symmetry with 
quark mixing
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Charmed quark couplings gcd and gcs are measured in neutrino scattering
experiments and give

It can be seen that decays involving couplings (175) are
Cabibbo-suppressed: they rates are reduced by an order

On the other hand, decays like c  sl+l and c  sud are
Cabibbo-allowed, hence: 

 charmed particles almost always decay into strange ones.

C 12 1=

gus
2

gud
2

---------
gcd

2
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2

-------- 2
Ctan 1

20
------= = =
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Adding the third generation

 Existence of c-quark was first predicted from the lepton-quark
symmetry

 After discovery of , , and b, the sixth quark has been predicted to
complete the symmetry: the top-quark was confirmed with the mass of

173 GeV/c2

 Announced in March 1995 by the two dedicated independent experiments at the 
Tevatron: CDF and D0

For two generations, form (173) is conveniently written in a matrix form
as:

(177)

Adding the third generation, mixing between all of them must be allowed:

d'

s' 
 
  Ccos Csin
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 

d
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 
 

=
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(178)

 The 3x3 matrix of (178) is the so-called 
CKM matrix V (Cabibbo-Kobayashi-Maskawa)

Coupling constants are then:
(179)

The two-generation mixing model agrees well with the experimental data,
hence Vub, Vcb, Vtd and Vts ought to be very small.

d'

s'

b' 
 
 
 
  Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb 
 
 
 
 
 

d

s

b 
 
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 
 

=

g gWV       ( u c t ;  d s b  = = =
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In the limit that mixing between the b quark and (d,s) ones can be
neglected, the CKM matrix is

(180)

and hence b’=b

Matrix (180) suggests that b-quarks can’t decay; they however do:

Figure 147:   Dominant decays of b-quark
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Decay modes of Fig.147 have rates proportional to squared couplings:

(181)

If Vub and Vcb are indeed 0, b-quark should be stable. In reality, it decays,
with the rather long lifetime of

(182)

If otherwise gub=gcb=gW , lifetime has to be shorter, like in the case of 
decays (Fig.148). 

Figure 148:   Dominant decays of  lepton
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Knowing the lifetime of  lepton 3x10-13 s, and assuming there is no
suppression of b decay (Vub=Vcb=1), the lifetime of b-quark should be:

where N is number of possible b-quark decays per analogous -decays
(3 for the leptonic mode and 4 - for semileptonic)

This contradicts experimental results (b quark lives much longer); more
precise recent measurements yield

(183)

which is still small enough for practical purposes.

b
1
N
----

m
mb
-------
 
 
  5

10 15– s

Vub 4.15 0.49  10
3–=     and     Vcb 40.9 1.1  10

3–=
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 The top-quark is much heavier than even W bosons and can produce
them by a decay like:

 As can be seen from CKM matrix (Vtd and Vts are ~0), the only
significant decay mode of t-quark is

t  W+ + b (184)

with a rate proportional to

Estimate of decay width  suggests very short lifetime:

Figure 149:   Decay t W+ + q
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 Top-quarks do not form hadrons because of the too short lifetime

Figure 150:   Decays of top-quark
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Boson factories in pictures

Figure 151:   UA1 detector layout (proton-antiproton collisions);
solid angle is fully covered down to 0.2°
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Figure 152:   Correlation between the electron and neutrino transverse energies
in W measurements by UA1.
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Figure 153:   W and Z masses as measured by UA1 (W) and UA1 and UA2 (Z) 
experiments
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Precision studies of W and Z bosons

All modern colliders produce copious amounts of weak bosons
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 Between 1989 and 1995 LEP operated at 45.6 GeV/beam (for Z studies)

 From 1996 to 2000, energy increased gradually to 104 GeV/beam, allowing 
precision studies of W bosons produced in pairs, and even Higgs near-discovery

Figure 154:   W pair production modes in electron-positron annihilation
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Figure 155:   The four LEP experiments (data taking 1989-2000):ALEPH, DELPHI, 
L3 and OPAL
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Figure 156:   A 4-jet WW event as registered by the DELPHI detector at LEP



Oxana Smirnova Lund University 282 

Figure 157:   W mass reconstruction by OPAL experiment at LEP. The qqlchannel 
is the golden channel: best measurement
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Figure 158:   Decays of the Z into e+e-, +- and qq and precision scan for the Z 
mass, by DELPHI experiment at LEP
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