IX. Weak Interactions: W and Z bosons

<+ Like in QED and QCD, the weak force carriers are spin-1 bosons; they
couple to quarks and leptons

Weak interactions are carried out by three intermediate vector bosons:
W* and W™ (mass 80.4 GeV), and Z° (91.2 GeV)

Since these bosons are very massive particles, weak interactions have very
short range (order of 2 x107 fm)

Historically, all observed weak processes were charged current reactions
mediated by W™ or W™ bosons (like B-decay) . Electroweak theory predicted
existence of neutral current reactions caused by the ZY boson
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Figure 127: Predicted neutral current reaction: no muon in the final state
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Figure 128: One of the first neutral current reactions as seen by the Gargamelle
bubble chamber in 1973
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Brief history of the W and Z bosons discovery

First dedicated study of vector bosons: detectors UA1 and UA2 at the
proton-antiproton collider SPS (Super Proton Synchrotron) at CERN
(started in 1981)

Search for leptonic decays of the W and Z bosons produced in pp_) collisions:

p+p—o> W+X
L1 + v (155)

p+p—->W+X
"+ v (156)

p+ p—>ZO+X
N L (157)

W and Z can decay into quarks as well, but in hadron collisions this can not be
identified
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Figure 129: The mechanism of W* and Z production in pE annihilation

From the quark point of view, processes (155)-(157) are quark-antiquark
annihilations:
u+d—o>W*', d+uoW (158)
utu—»2%, d+d—->2° (159)

To obtain sufficient centre-of-mass energies for quark-antiquark collisions
(~90 GeV), proton and antiproton beams at SPS had an energy of
270 GeV each.

Oxana Smirnova Lund University 247



W bosons
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Figure 130: A W boson observed by UA1 detector in 1982; a high transverse
momentum electron is indicated by the arrow

Signature of a W boson:
— a lepton with large momentum ( p(1)>10 GeV/c ) is emitted at a wide angle to

the beam ( @>5")
— large “missing transverse momentum’ ( p7=psin @) carried away by neutrino
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Neutrinos can not be detected, but we know that in a symmetric collision, sum of
all the momenta must be 0. Events with large missing momentum (>15 GeV in
UA1) indicate presence of energetic neutrinos

if pr(W)=0 = pr = pr(l) : the missing transverse momentum is equal to
the transverse momentum of the detected lepton

From 43 events observed by UA1, the mass of W* and W™ was defined
as

M. = 80.33+0.15 GeV/c? (160)

/4

and the decay width as

T, = 2.07+0.06 GeV (161)

/4

which corresponds to the lifetime of 3.2 x10%° s

Branching ratios of leptonic decay modes of W* are about 11% for each lepton
generation
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Figure 131: A later result from the DO experiment at the Tevatron (also
proton-antiproton collisions); fit gives M,,,=80.48+ 0.09 GeV

W bosons can be pair-produced in e*e” annihilation, and the up-to-date
world average for the W mass is

My, = 80.385+0.015 GeV/c? (162)
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Z9% boson

Signature of a ZY boson in pE collision: pair of leptons (e*e") with very
large momenta.

Mass of the Z° then equals to the invariant mass of leptons

Figure 132: A Z° production event in the UA1 detector.
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Knowing My, the mass of Z° was predicted to be M~90 GeV/c?

From the first 18 electron and 10 muon events measured by UA1:
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Figure 133: Dilepton mass spectra near the Z0 peak at Tevatron

More precise methods and new data from e*e” collisions at LEP give
M, = 91.1876 £ 0.0021 GeV/c? T, = 2.4952+0.0023 GeV/c?  (164)

which corresponds to the lifetime of 2.6x1 0%s.

Branching ratios of leptonic decay modes of Z0 are around 3.4% for each lepton
generation
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Charged current reactions

Charged current reactions are weak interactions mediated by the
charged W bosons:

1) purely leptonic processes: " — € + vg + v

u
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3) semileptonic reactions: n — p + € + v,

Reminder: all the electromagnetic interactions can be built from eight
basic interactions:

Figure 134: The basic vertex for electron-photon interactions
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In a similar way, leptonic weak interaction processes can be built from

a certain number of reactions corresponding to basic vertices:

- +
Vi | Vi I

(a) (b)

W W
Figure 135: The two basic vertices for W*-lepton interactions

Weak interactions always conserve lepton quantum numbers

Diagram-wise this conservation is guaranteed by:

— at each vertex, there is one arrow pointing in and one pointing out

“l”

— lepton indices ‘" are the same on both lines
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Figure 136: Eight basic weak current reactions
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Figure 137: Vertices violating lepton number conservation (forbidden)

Processes of Figure 136 are virtual, so that two or more have to be combined to
conserve energy

However, processes like in Fig.136(e) and 136(f) do not violate energy
conservation if

Mw > M, + M, (I=e 1)
In particular, reactions 155 and 156, used to detect the W bosons, are dominated
by mechanisms shown in Fig.136(e) and 136(f).

Leptonic vertices are characterized by the corresponding strength
parameter oy independently on lepton type involved
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Knowing the decay rate of W — ev, one can estimate ayy to the first
order:

Since the process involves only one vertex and lepton masses are negligible =

(W —ev) = oMy =800, GeV (165)
Measured decay rate:
I'(W—ev)=0.2 GeV (166)
which gives
oy~ 1/400 = O(a,, ) (167)

hence the “strength” of the weak interaction is comparable with the
electromagnetic one

Weak interaction is still much weaker at low energies E<<M,y,
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Analogues of electron-electron scattering by photon exchange:

vyte > u +vg (168)
(@) (b) B
Vi u Vi H
W W+
e Ve e Ve

Figure 138: Time-ordered diagrams for inverse muon decay (168)

Time ordering implies changing the sign of the current!

A conventional muon decay is depicted involving W™ :

Figure 139: Dominant diagram for muon decay
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Including higher order diagrams, inverse muon decay (168) can look like:
Ho Vu -
Vu > > > > 1l
?W- ;W-'- §W-

Figure 140: Some higher order contributions to inverse muon decay

A diagram like Fig.140 gives a negligible contribution of order och to the total
cross section, analogously to the case of electromagnetic photon exchange

Since W bosons are very heavy, at E<<M,y, interactions like (168) can be
approximated by a zero-range interaction:

Vi dw M i "
w* — Gr
Mw—)OO
e 9w Ve e Ve

Figure 141: Low-energy zero-range interaction in muon decay

Oxana Smirnova Lund University 260



Taking into account spin effects, the relation between ayy and G in
zero-range approximation is:

_F_ S (169)

where gy, iIs the coupling constant in W-vertices, ochgiVMn by
definition.

This gives the estimate of ocW=4.2x1O'3=O.58oc em» Which is perfectly
compatible with estimate (167)

ayy is indeed slightly smaller than a. ¢, in the low energy
approximation

Weak interaction rates are only small at low energies, because the
very large Myy enters (169) as the inverse square
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Weak interactions of hadrons: constituent quarks emit or absorb W
bosons

>
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Yvy

Figure 142: Neutron B-decay

Lepton-quark symmetry. corresponding generations of quarks and
leptons have identical weak interactions:
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The coupling constants do not change upon exchange of quarks/leptons:
8.4 = &5 = &w (170)

u d u d c S c S
Y id/ ? iy
W W W W+

Figure 143: W-quark vertices assumed by lepton-quark symmetry

An example of an allowed reaction:

n‘—)u‘+§ a—>u_+§
T w (171)

However, some observed reactions are not consistent with the
lepton-quark symmetry:

K—>p+v, (Su—>p +vy) (172)

(branching ratio of this process is 0.63 - quite a common decay)
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Figure 144: Dominant quark diagrams for A decay

P

o cc

To solve the contradiction, the “quark mixing” hypothesis was introduced
by Cabibbo:

d- and s-quarks participate the weak interactions via the linear
combinations:

d = dcos@c+ssin€)c

L (173)
s = —dszn9c+scos(9c

Parameter 0 is called Cabibbo angle
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Quark-lepton symmetry applies to doublets like

PES

u d u S
9w Jud Qus
+
W= W+ W+

Jud=9wC0S8c  Gus=9wsinbc

Figure 145: Interpretation of quark mixing

Quark mixing hypothesis allows some more W-quark vertices:

8,4 8.y = gWCOSGC (174)
g,s = &g = &ysinO, (175)
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Jus Jus Jcd Jcd

W= W= W= W=

Figure 146: Additional W-quark vertices assumed by lepton-quark symmetry with
quark mixing

Cabibbo angle is not given by the theory and has to be measured
experimentally, for example, comparing decay rates:

T(K > pv,) Lo
oC

- S 2
['(mt™—> VM) g

2
= tan GC

which corresponds to
0, = 12.7°£0.1° (176)
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Charmed quark couplings g.; and g, are measured in neutrino scattering
experiments and give

0= 12°£1°

It can be seen that decays involving couplings (175) are
Cabibbo-suppressed- they rates are reduced by an order

2 2

us _ 8cd _ 29 |
— 2 BT g
8ud Ecs

On the other hand, decays lke ¢ — sl'vy and ¢ — sud are
Cabibbo-allowed, hence:

charmed particles almost always decay into strange ones.
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Adding the third generation

Existence of c-quark was first predicted from the lepton-quark
symmetry

After discovery of 1, v, and b, the sixth quark has been predicted to
complete the symmetry: the top-quark was confirmed with the mass of

173 GeV/c?

Announced in March 1995 by the two dedicated independent experiments at the
Tevatron: CDF and DO

For two generations, form (173) is conveniently written in a matrix form

as.
. cos0 ~ sin0
( d j _ ¢ Sindc ( dj )
s' —sin GC cos 0 C S

Adding the third generation, mixing between all of them must be allowed:
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d Vud Vus Vub d
s T Vcd Vcs Vcb S (178)
b Via Vis Vip J\ P
The 3x3 matrix of (178) is the so-called
CKM matrix V5 (Cabibbo-Kobayashi-Maskawa)
Coupling constants are then:
gOLB = gWVOLB (OL - U,cC, taB — da Sab) (179)

The two-generation mixing model agrees well with the experimental data,
hence V,, V.4, V,;and V., ought to be very small.
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In the limit that mixing between the b quark and (d,s) ones can be
neglected, the CKM matrix is

Vud Vus Vub COSGC SinGC 0
Vcd Vcs Vcb ~ —Sinec COSOC 0 (180)
Vl‘d Vl‘s Vl‘b 0 0 1

and hence b'=b

Matrix (180) suggests that b-quarks can’t decay; they however do:

q

Figure 147: Dominant decays of b-quark
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Decay modes of Fig.147 have rates proportional to squared couplings:
|gub|2 - |Vub‘2g§V or |gcb‘2: ’Vcb‘ZggV (181)
If V., and V_, are indeed 0, b-quark should be stable. In reality, it decays,

with the rather long lifetime of
T, ~ 107175 (182)

If otherwise g,,=g.,=gy , lifetime has to be shorter, like in the case of t
decays (Fig.148).

Figure 148: Dominant decays of t lepton
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Knowing the lifetime of t lepton t~3x10™® s, and assuming there is no
suppression of b decay (V,,=V;,=1), the lifetime of b-quark should be:

where N is number of possible b-quark decays per analogous t-decays
(3 for the leptonic mode and 4 - for semileptonic)

This contradicts experimental results (b quark lives much longer); more
precise recent measurements yield

-3 -3
V| = (415+0.49)x 10 and  |V,,| = (40.9+ 1.1)x 10 (183)

which is still small enough for practical purposes.
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The top-quark is much heavier than even W bosons and can produce

them by a decay like:
VV+
t—<

g=d,s,b

Figure 149: Decay t—> W™ + q

As can be seen from CKM matrix (V,; and V,, are ~0), the only

significant decay mode of t-quark is
t>W'+b (184)

with a rate proportional to
oy = g2,/ 4m ~ 4.2x10 7
Estimate of decay width T" ~ a.;,m, ~ I GeV suggests very short lifetime:

rtz4><10_25s
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Top-quarks do not form hadrons because of the too short lifetime

Vi

Figure 150: Decays of top-quark
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Boson factories in pictures

Figure 151: UA1 detector layout (proton-antiproton collisions);
solid angle is fully covered down to 0.2°
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Figure 152: Correlation between the electron and neutrino transverse energies

in W measurements by UA1.
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Figure 153: W and Z masses as measured by UA1 (W) and UA1 and UA2 (Z)
experiments
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Precision studies of W and Z bosons

All modern colliders produce copious amounts of weak bosons
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Between 1989 and 1995 LEP operated at 45.6 GeV/beam (for Z studies)

. 99 99 qq9lv  [v]v
e oW 46% 4% 11%

Figure 154: W pair production modes in electron-positron annihilation

From 1996 to 2000, energy increased gradually to 104 GeV/beam, allowing
precision studies of W bosons produced in pairs, and even Higgs near-discovery
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Figure 155: The four LEP experiments (data taking 1989-2000):ALEPH, DELPHI,

L3 and OPAL
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Figure 156: A 4-jet WW event as registered by the DELPHI detector at LEP
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Figure 158: Decays of the Z into e*e”, 171" and qa and precision scan for the Z
mass, by DELPHI experiment at LEP
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