FYST17 Lecture 8 Statistics and hypothesis testing

Thanks to T. Petersen, S. Maschiocci, G. Cowan, L. Lyons

Plan for today:

- Introduction to concepts
 - The Gaussian distribution
- Likelihood functions
- Hypothesis testing
 - Including p-values and significance
- More examples

Interpretation of probability

- 1. Interpretation of probability as **RELATIVE FREQUENCY** (frequentist approach):
 - A, B, ... are outcomes of a repeatable experiment:

$$P(A) = \lim_{n \to \infty} \frac{\text{times outcome is } A}{n}$$

See quantum mechanics, particle scattering, radioactive decays ...

2. SUBJECTIVE PROBABILITY

A, B, ... are hypotheses (statements that are true or false) P(A) = degree of belief that A is true

In particle physics, frequency interpretation often most useful, but subjective probability can provide a more natural treatment of nonrepeatable phenomena

(systematic uncertainties, probability that higgs exists ...)

PDF = probability density function

Suppose outcome of experiment is **continuous** value x:

P(x found in [x, x+dx]) = f(x)dx

 \rightarrow f(x) = probability density function (pdf)

With:

 $\int_{-\infty}^{\infty} f(x) dx = 1$ (x must be somewhere)

Note:

- f(x) ≥ 0
- f(x) is NOT a probability ! It has dimension 1/x !

Definitions

Mean or expectation value

$$\mathsf{E}[\mathsf{x}] = \int \mathsf{x} \mathsf{f}(\mathsf{x}) \mathsf{d}\mathsf{x} = \mu$$

Variance:

$$V[x] = E[(x-E[x])^2] = E[x^2]-\mu^2 = \sigma^2$$

Standard deviation:

$$\sigma = \sqrt{\sigma^2}$$

Covariance $cov[x,y] = E[(x - \mu_x)(y - \mu_y)]$

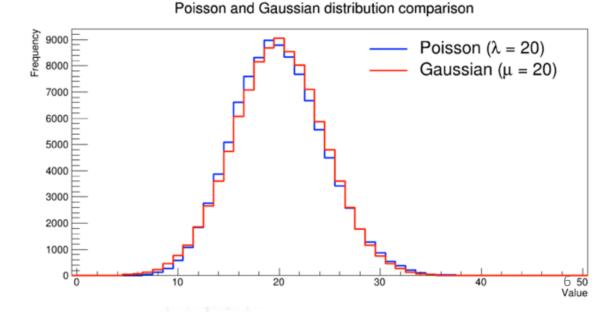
Correlation coefficient
$$\rho_{xy} = \frac{\text{cov}[x, y]}{\sigma_x \sigma_y}, \quad -1 \le \rho_{xy} \le +1$$

PDF examples

Binomial: N trials with p chance of success, probability for n successes:

$$f(n; p, N) = \frac{N!}{n!(N-n)!} p^n (1-p)^{N-n}$$

If $N \rightarrow \infty$ and $p \rightarrow 0$ but $Np \rightarrow \lambda$ then we have **Poisson:** (already N>50, p<0.1 works) $f(n; \lambda) = \frac{\lambda^n}{n!} e^{-\lambda}$



And for large λs can use **Gaussian**

The Gaussian distribution

The Gaussian pdf is defined by

$$f(x; \mu, \sigma^{2}) = \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left(\frac{-(x-\mu)^{2}}{2\sigma^{2}}\right) \qquad \begin{array}{c} \mathsf{E}[x] = \mu\\ \mathsf{V}[x] = \sigma^{2} \end{array}$$

$$\begin{array}{c} \mathsf{E}[x] = \mu\\ \mathsf{V}[x] = \sigma^{2} \end{array}$$

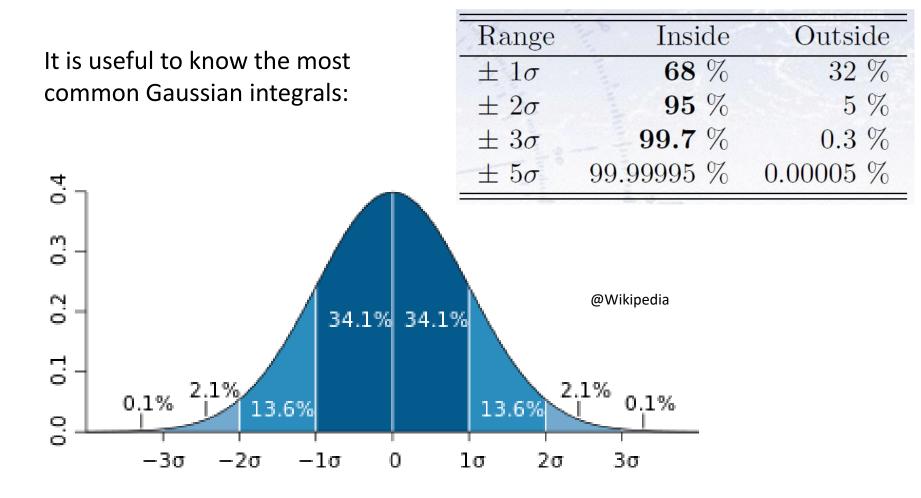
$$\begin{array}{c} \mathsf{V}[x] = \sigma^{2} \end{array}$$

$$\begin{array}{c} \mathsf{V}[x] = \sigma^{2} \end{array}$$

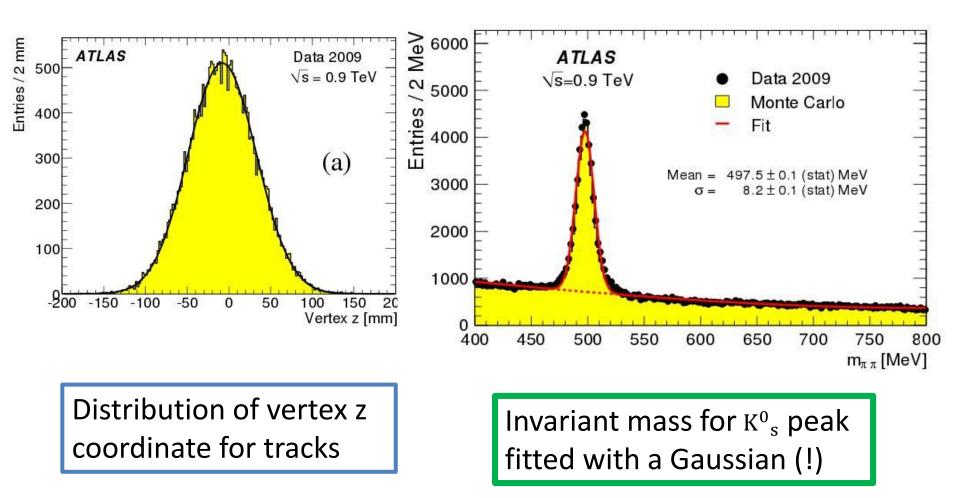
$$\begin{array}{c} \mathsf{Special case: } \mu = 0, \ \sigma^{2} = 1\\ \varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^{2}/2}, \end{array}$$

$$\begin{array}{c} \mathsf{If } y \text{ is a Gaussian with } \mu, \ \sigma^{2}, \text{ then } x = \frac{y-\mu}{\sigma} \text{ follows } \varphi(x) \end{array}$$

The Gaussian distribution



ATLAS examples of Gaussian distributions



Central limit theorem

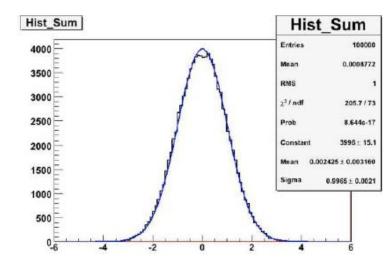
What we used already in MC studies

Central Limit theorem:

The sum on N *independent* continuous random variables x_i with means μ_i and variances σ_i^2 becomes a Gaussian random variable with mean $\mu = \Sigma_i \mu_i$ and variance $\sigma^2 = \Sigma_i \sigma_i^2$ in the limit that N approaches infinity

Try for yourselves! Example: sum of 10 uniform numbers = Gaussian!

Gaussian functions play important role in applied statistics Uncertainties tend to be Gaussian!



Quick exercise

Measurement of transverse momentum of a track from a fit

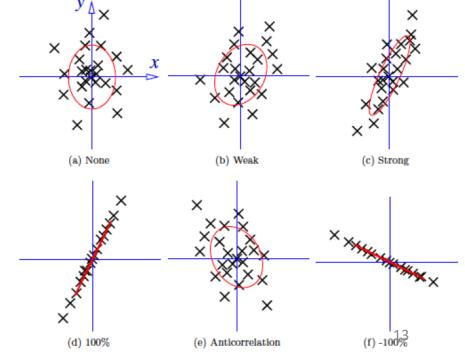
- Radius of helix given by $R=0.3Bp_T$
- Track fit returns a Gaussian uncertainty in the curvature, e.g. the pdf is Gaussian in $1/p_T$
- What is the error on p_T ?

$$\frac{\sigma_{p_T}}{p_T} = p_T \cdot \sigma_{1/p_T}$$

Error propagation in two variables

$$\sigma_{a}^{2} = \left(\frac{df}{dx}\right)^{2} \sigma_{x}^{2} + \left(\frac{df}{dy}\right)^{2} \sigma_{y}^{2} + 2\frac{df}{dx}\frac{df}{dy}\left(\frac{cov[x,y]}{\sigma_{x}\sigma_{y}}\right)\sigma_{x}\sigma_{y}$$
$$\frac{cov[x,y]}{\sigma_{x}\sigma_{y}} = \rho = \text{correlation coefficient}$$

- -1 ≤ ρ ≤ +1
- ρ = 0 : variables are INDEPENDENT
- ρ ≠ 0 : variables are CORRELATED
 - ρ > 0 : correlated
 - ρ < 0 : anti-correlated



Parameter estimation

The parameters of a pdf are constants that characterize its shape, e.g.

$$f(x;\theta) = \frac{1}{\theta}e^{-x/\theta}$$

random variable parameter

Suppose we have a sample of observed values: $\vec{x} = (x_1, \ldots, x_n)$

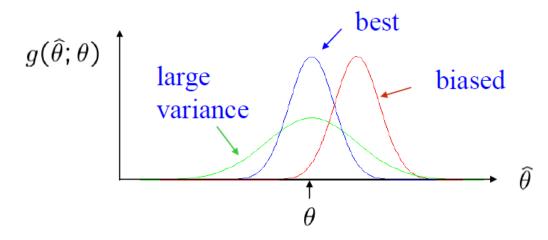
We want to find some function of the data to estimate the parameter(s):

 $\hat{\theta}(\vec{x}) \leftarrow \text{estimator written with a hat}$

Sometimes we say 'estimator' for the function of $x_1, ..., x_n$; 'estimate' for the value of the estimator with a particular data set.

Estimators

If we were to repeat the entire measurement, the estimates from each would follow a pdf:



We want small (or zero) bias (systematic error): b = E[θ] − θ
→ average of repeated measurements should tend to true value.
And we want a small variance (statistical error): V[θ]
→ small bias & variance are in general conflicting criteria

Likelihood functions

Given a PDF f(x) with parameter(s) θ , what is the probability that with N observations, x_i falls in the intervals [x_i; x_i+ dx_i]? Described by the likelihood function:

$$\mathcal{L}(\theta) = \prod_{i} f(x_i, \theta) dx_i$$

Likelihood functions

Given a set of measurements x_i and parameter(s) θ , the likelihood function is defined as:

$$\mathcal{L}(x_1, x_2, \dots, x_N; \theta) = \prod_i f(x_i, \theta)$$

The **principle of maximum likelihood** for parameter estimation consists of maximizing the likelihood of parameter(s) (here θ) given some data (here x)

The likelihood function plays a central role in statistics, as it can shown to be:

- ✓ Consistent (converges to the right value!)
- Asymptotically normal (converges with Gaussian errors)

Efficient and "optimal" if it can be applied in practice

Computational: often easier to minimize log likelihood:

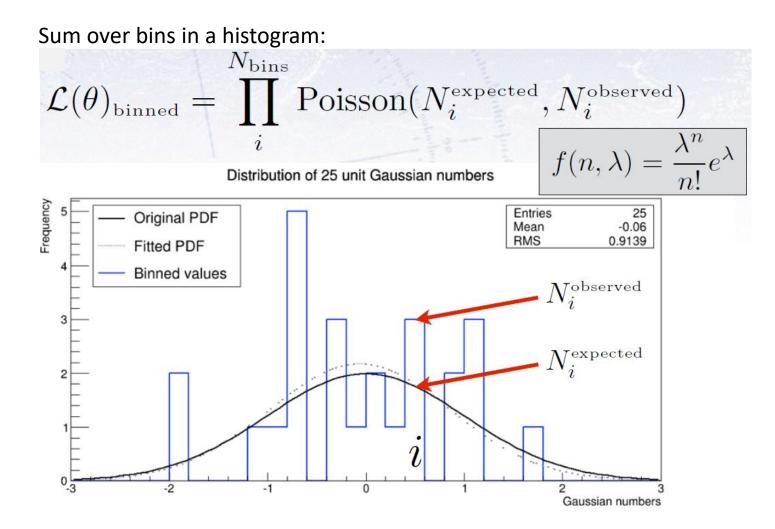
$$\frac{\partial \ln \mathcal{L}}{\partial \theta} \bigg|_{\theta = \bar{\theta}} = 0$$

In problems with Gaussian errors boils down to a χ^2

Two versions, in practice:

- Binned likelihood
- Unbinned likelihood

Binned likelihood

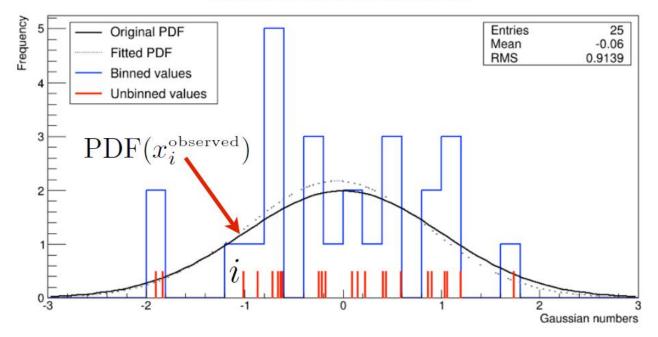


Unbinned likelihood

Sum over single measurements:

$$\mathcal{L}(\theta)_{\text{unbinned}} = \prod_{i}^{N_{\text{meas.}}} \text{PDF}(x_i^{\text{observed}})$$

Distribution of 25 unit Gaussian numbers



Hypothesis testing

Hypotheses and acceptance/rejection regions

Goal is to make some statement based on the observed data x, as to the validity of the possible hypotheses.

A test of hypothesis H_0 is defined by specifying a **critical region** W (also called **rejection** region) of the data space S, such that there is no more than some (small) probability α , assuming H_0 is correct, to observe the data there:

 $\mathsf{P}(\mathsf{x} \in \mathsf{W} | \mathsf{H}_0) \leq \alpha$

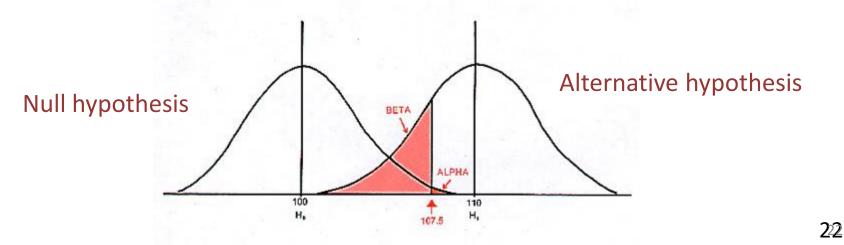
If x is observed there, reject H_0 .

 α is called the size or significance level of the test.

The complementary region is called acceptance region.

Test statistics

- 1. State hypothesis (null and alternative)
- 2. Set criteria for decision, select test statistics, select a significance level
- 3. Compute the value of the test statistics and from that the probability of observation under null-hypothesis (p-value)
- 4. Make the decision! Reject null hypothesis if p-value is below significance level



Test statistics

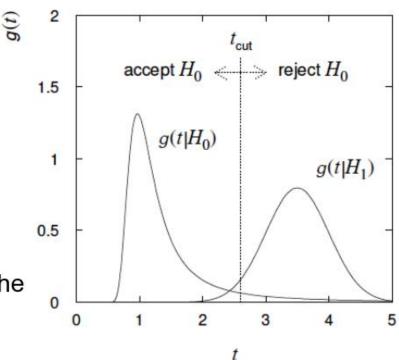
The decision boundary can be defined by an equation of the form:

where $t(x_1, ..., x_n)$ is a scalar test statistic

We can work out the pdf's: $g(t|H_0), g(t|H_1)$

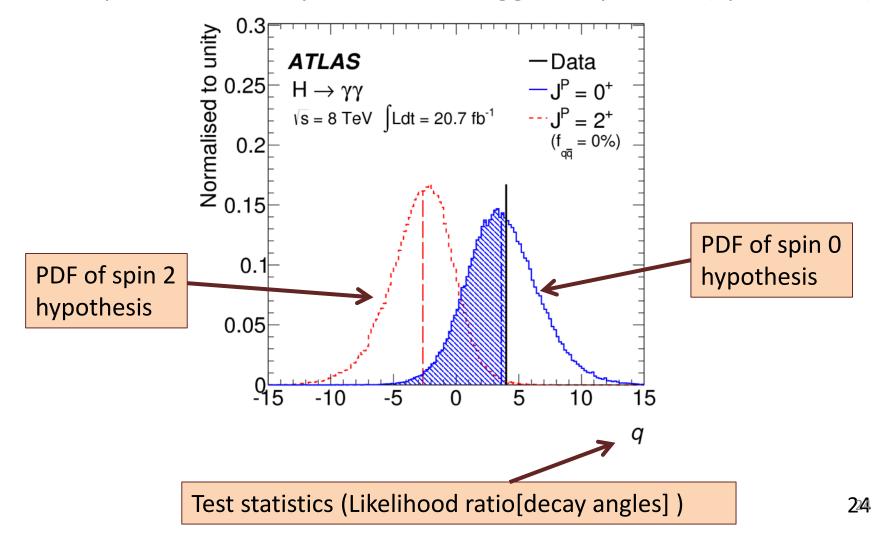
Decision boundary is now a single 'cut' on t, which divides the space into the critical (rejection region) and the acceptance region.

This defines a **TEST**: if the data fall in the critical region, we reject H₀



Example of hypothesis test

The spin of the newly discovered Higgs-like particle (spin 0 or 2?)



Selection

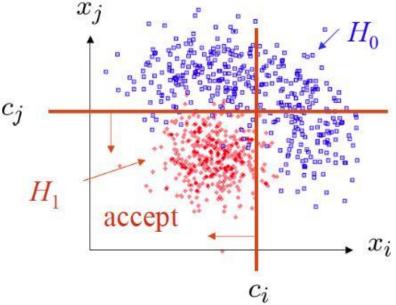
We have a data sample with two kinds of events, corresponding to hypotheses H_0 (background) and H_1 (signal).

We want to select those of type H₁.

Each event is a point in \vec{x} space (n dimensions).

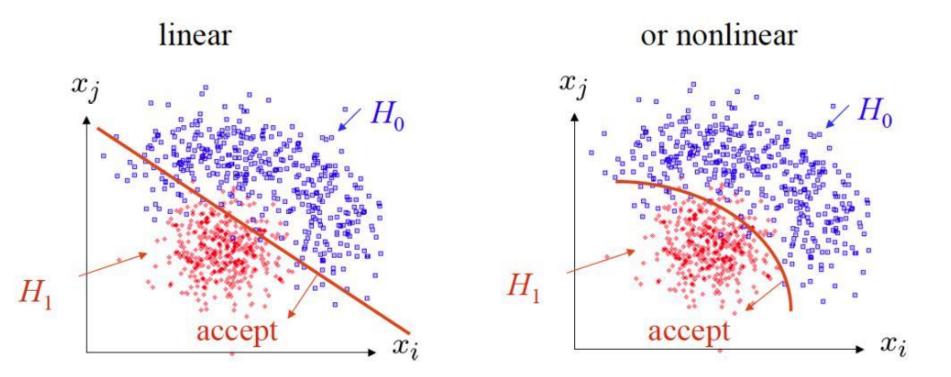
What 'decision boundary' should we use to accept/reject events as belonging to event types H_0 or H_1 ?

One possibility is to select events with several 'cuts': e.g.



Other selection options

But we can also use some other sort of decision boundary !!

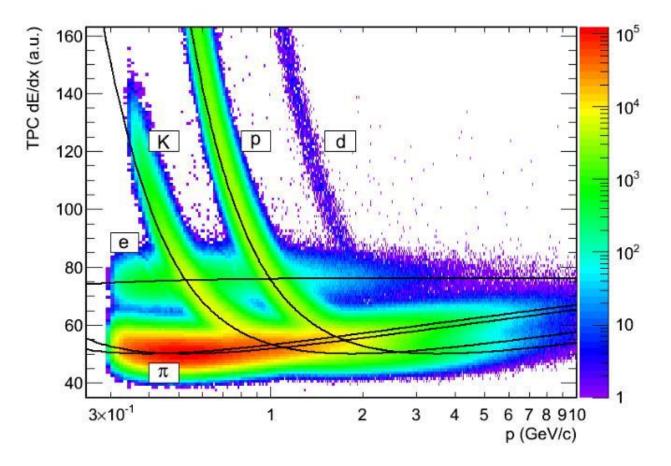


How can we formalize this to choose the boundary in an 'optimal' way?

ALICE example

Use the ALICE Time Projection Chamber to identify the particle species: electron, muon, pion, kaon, proton, deuteron

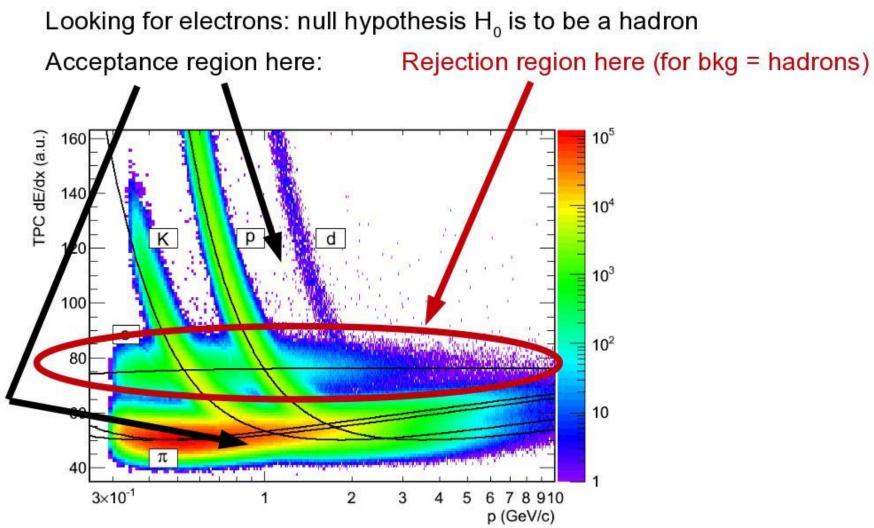
"x" = particle momentum (p), specific energy loss in TPC (dE/dx) (and more)



Example: I want to select electrons (hypothesis H₁) from all other particles (hypothesis H₀)

In Bayesian approach: Can add prior hypotheses on the relative particle abundances (e.g. you see that pions are many more!)

ALICE example



Type I / Type II errors:

Rejecting the hypothesis H₀ when it is true is a Type-I error. The maximum probability for this is the **size of the test**:

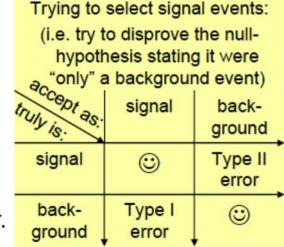
 $P(x \in W | H_0) \leq \alpha$

But we might also accept H_0 when it is false and an alternative H_1 is true. This is called Type-II error, and occurs with probability:

$$\mathsf{P}(\mathsf{x} \in \mathsf{S} - \mathsf{W} | \mathsf{H}_1) = \beta$$

One minus this is called the power of the test with respect to the alternative hypothesis H₁:

Power = $1 - \beta$



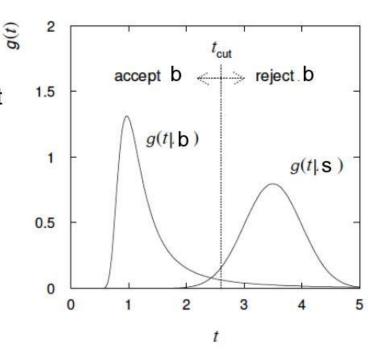
Signal/background efficiency

The probability to reject background hypothesis for a background event (background efficiency) is:

 $\epsilon_{b} = \int_{t_{cut}}^{\infty} g(t|b) dt = \alpha$

The probability to accept a signal event as signal (signal efficiency) is:

$$\epsilon_{s} = \int_{t_{aut}}^{\infty} g(t|s) dt = 1 - \beta$$



Neyman-Pearson's lemma

The **Neyman-Pearson lemma** states: to ge the highest purity for a given efficiency, (i.e. highest power for a given significance level), choose the acceptance region such that:

 $\frac{g(t|H_0)}{g(t|H_1)} > C,$ where c=constant that determines the efficiency

This even gives that the likelihood ratio, $-2 \ln \frac{\mathcal{L}_0}{\mathcal{L}_1}$, is the most powerful test

(Chap 5)

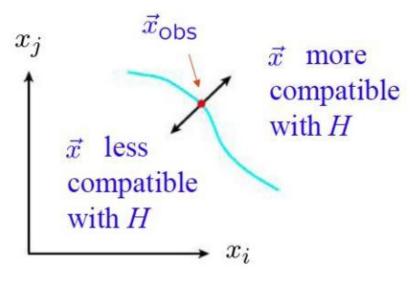
Significance tests/goodness of fit

Suppose hypothesis *H* predicts pdf $f(\vec{x}|H)$ for a set of observations $\vec{x} = (x_{1,}...,x_{n})$

We observe a single point in this space: \vec{x}_{obs}

What can we say about the validity of *H* in light of the data?

Decide what part of the data space represents less compatibility with H than does the point \vec{x}_{obs} (Not unique!)



p-values

Express 'goodness-of-fit' by giving the p-value for H:

p = probability, under assumption of H, to observe data with equal or lesser compatibility with H relative to the data we got

NOTE! This is NOT the probability that H is true!

In frequentist statistics we don't talk about P(H) (unless H represents a repeatable observation).

In Bayesian statistics we do. Use Bayes' theorem to obtain

$$P(H|\vec{x}) = \frac{P(\vec{x}|H) \pi(H)}{\int P(\vec{x}|H) \pi(H) dH}$$

where $\pi(H)$ is the prior probability for H.

For now stick with the frequentist approach.

Significance of an observed signal

Suppose we observe n events. These can consist of:

n_b events from known processes (background)

n_s events from a new process (signal)

If n_s , n_b are Poisson random variables with means s, b, then $n=n_s+n_b$ is also Poisson, with mean s+b

$$P(n;s,b) = \frac{(s+b)^n}{n!} e^{-(s+b)}$$

Suppose b=0.5, and we observe nobs=5. Should we claim evidence for a new discovery?

Significance of an observed signal

Suppose we observe n events. These can consist of:

n_b events from known processes (background)

n_s events from a new process (signal)

If n_s , n_b are Poisson random variables with means s, b, then $n=n_s+n_b$ is also Poisson, with mean s+b

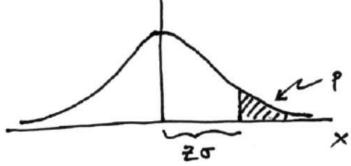
$$P(n;s,b) = \frac{(s+b)^n}{n!} e^{-(s+b)}$$

Suppose b=0.5, and we observe nobs=5. Should we claim evidence for a new discovery?

Give p-value for hypothesis s=0: p-value = P(n ≥ 5 ; b=0.5, s=0) = 1.7 x 10⁻⁴ ≠ P(s=0) !!

Significance vs p-value

Often define significance Z as the number of standard deviations that a Gaussian variable would fluctuate in one direction to give the same p-value



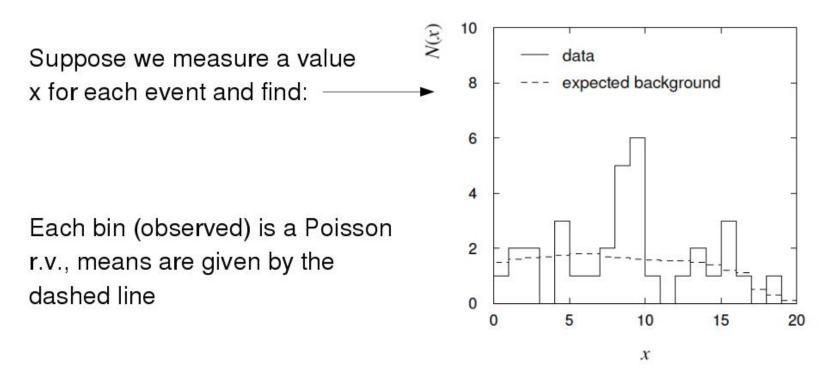
Small p = unexpected

$$p=\int_Z^\infty rac{1}{\sqrt{2\pi}}e^{-x^2/2}\,dx=1-\Phi(Z)$$
 1 - TMath::Freq

 $Z = \Phi^{-1}(1-p)$ TMath::NormQuantile

(x ₀ -μ)/σ	1	2	3	4	5
р	16%	2.3%	0.13%	0. 003%	0.3*10 ⁻⁶

Significance of a peak



In the two bins with the peak, 11 entries found with b = 3.2The p-value for the s=0 hypothesis is:

P(n ≥ 11; b=3.2, s=0) = 5.0×10^{-4}

Significance of a peak

But ... did we know where to look for the peak?

 \rightarrow give P(n \geq 11) in any 2 adjacent bins

Is the observed width consistent with the expected x resolution?

 \rightarrow take x window several times the expected resolution How many bins x distributions have we looked at?

→ look at a thousand of them, you'll find a 10^{-3} effect Did we adjust the cuts to "enhance" the peak?

→ freeze cuts, repeat analysis with new data How about the bins to the sides of the peak ... (too low!) Should we publish ??

How many σ 's?

HEP folklore is to claim discovery when $p= 2.9 \times 10^{-7}$, corresponding to a significance Z=5.

This is very subjective and really should depend on the prior probability of the phenomenon in question, e.g.

Phenomenon	Reasonable p-value for discovery		
D°D° mixing	~0.05		
Higgs	~10 ⁻⁷		
Life on Mars	~10 ⁻¹⁰		
Astrology	~10 ⁻²⁰		

One should also consider the degree to which the data are compatible with the new phenomenon, not only the level of disagreement with the null-hypothesis: p-value is only the first step !!!

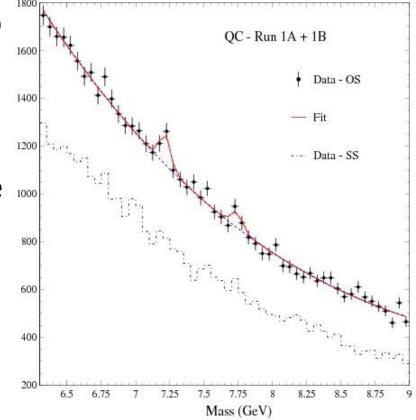
Look-elsewhere-effect (LLE)

Example from CDF: Is there a bump at 7.2 GeV ? (and even 7.75 GeV?!)

Excess has significance but when we take into account that the bump(s) could have been anywhere in the spectrum (the lookelsewhere-effect) significance is reduced:

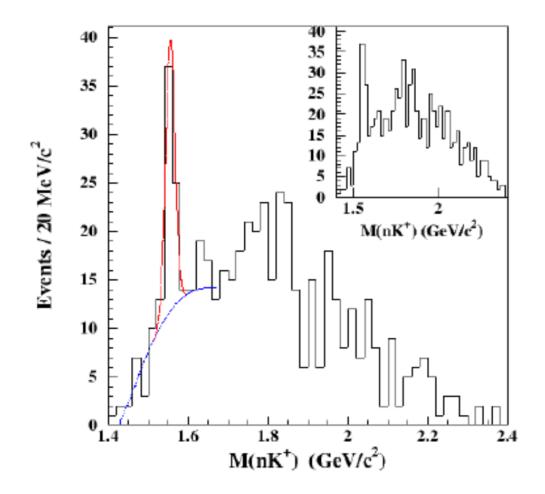
p-value(corr) = p-value × (number
of places it might have been
spotted in spectrum)

In this case ~ mass interval / width of bump

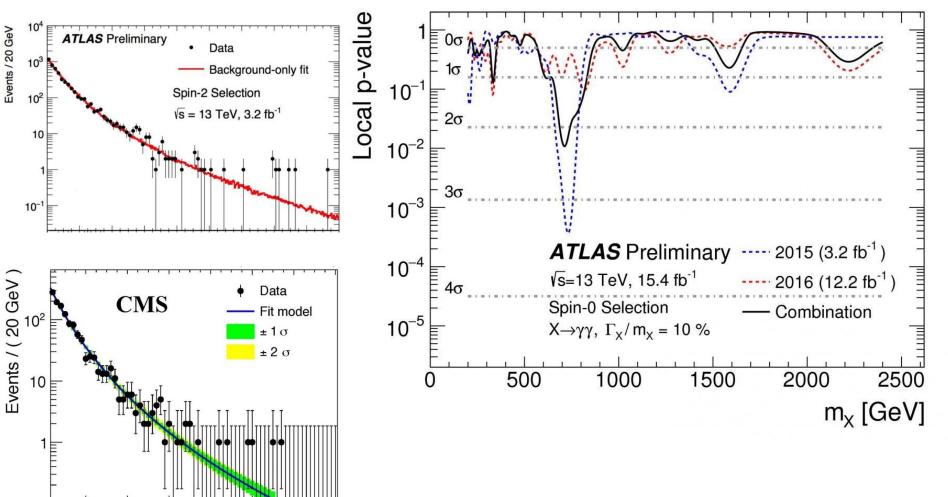


Results in low significance Never saw these again

Remember the penta-quark ...

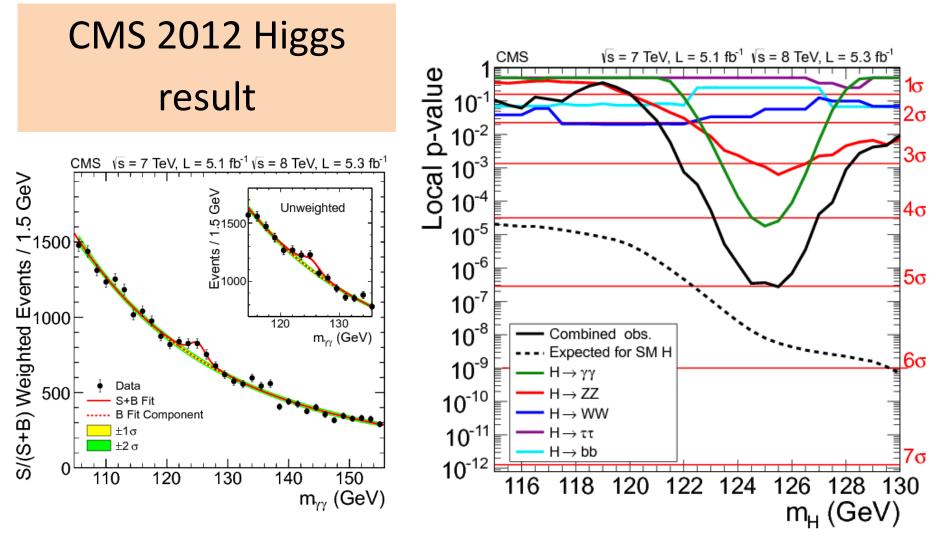


The ATLAS/CMS diphoton bump



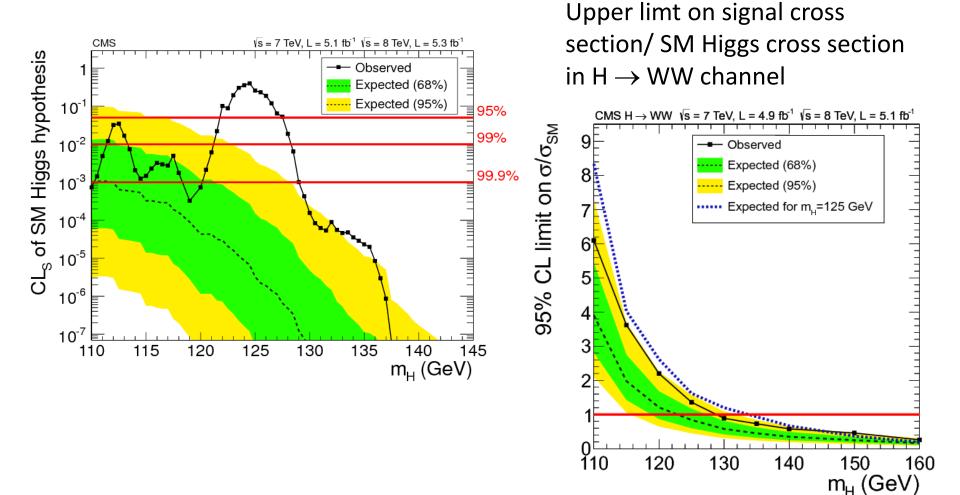
(example 3.2)

Limit setting



(example 3.2)

Confidence intervals



44

Summary/ outlook

Gaussian distribution very useful

Errors tend to be gaussian

- To check a New Physics hypothesis against the Standard Model
 - Define test statistics
 - Define level of significance
 - Remember the look elsewhere effect
- P-values gives P(data|null hypothesis)
 - It does not say whether the hypothesis is true!