Introduction to Neutrino Physics

Elisabeth Falk University of Sussex and Lund University

Lecture 3 Neutrino oscillations Part 3 Neutrinoless double beta decay Part 1

Recap lecture 2

- Neutrino mixing parameters (θ , Δm^2) for "solar" and "atmospheric" neutrino sectors have been well measured
 - Results dominated by SNO, KamLAND ("solar"); Super-Kamiokande, MINOS ("atmospheric")
- We are seeing the first results from experiments that will tell us about the subdominant $\theta^{}_{13}$
 - T2K, MINOS
 - More on that today
- θ_{13} must be > 0 for δ to exist
 - But there is another possibility for leptonic CP violation if neutrinos are Majorana particles
- $sin^2 2\theta_{13}$ must be >~ 0.01 to be experimentally accessible
 - This would open up an avenue for leptonic CPv

Outline lecture 3

- θ_{13} with reactor experiments
- Wrap-up of neutrino-oscillations
- Neutrino mass
- Majorana neutrinos and the see-saw mechanism

θ_{13} : Long-baseline accelerator vs. reactor experiments

LBL accelerator experiments:

- Look for appearance ($v_{\mu} \rightarrow v_{e}$) in pure v_{μ} beam vs. *L* and *E*
- Near detector to measure • background $v_{e}s$ (beam + mis-id)
- $P(v_{\mu} \rightarrow v_{e}) = f(\delta, \operatorname{sign}(\Delta m_{31}^{2}))$

Reactor experiments:

- Look for disappearance $(\overline{v}_e \rightarrow \overline{v}_e)$ as a fnc of *L* and *E*
- Near detector to measure unoscillated flux
- $P(\overline{v_e} \rightarrow \overline{v_e})$ independent of δ ; matter effects small

Combination of appearance and disappearance very powerful if comparable sensitivity

MINOS, T2K, NOvA

Double Chooz, Daya Bay, RENO

E. Falk, U. of Sussex and Lund U.

$\theta_{\rm 13}$ measurements at reactors

Three reactor experiments

Double Chooz Physics data-taking with FD since Apr '11

RENO Physics data-taking with both detectors since Aug '11

Daya Bay Data-taking with 2 of 8 detectors since Aug '11

	Dapene
	Pane Wan
Pak Man Uk Pin Tunc	y Wan
Shek Au Fanling Lai Tau Cheun	g.Wo
Tin San Wai Shuse Was Ting Kok	
an Yung	🔭 Kau Lau Wan
Long tie Fai Po Shue Au	Wu Lei Kiu
Tei Wu Kwai Sha	
HONG KONG SAR (CHINA)	ng Yi Chau 📃
Sai Kung Pak A	Sha Tsiu
Cheung Sha Wan, Pik Uk	🖡 Fu Tau Pun Chau
Kai Tak Internatio	nal Airport
	•
Inset Peak Victory APPY VALLEY	
Peak 554 m Hong Kong	•
(1818 ft) Mount Collins	on
E. Falk, U. of Sussex and Lunc	South
Fa Peng	China Sea

Wolsona

Kuivon

ava Bav

ANMEN DAĞ

 Birmingham
 Amsterdam
 Zwolle
 Construction

 Northampton
 Barnet
 Suthend-on-Sea
 Nederland

 Darier
 Bristol
 Puge •
 Belgie
 France

 Ever
 Portsmauth
 Amiens
 Luxembourg

 Pymouth
 Amiens
 Luxembourg

 Cardinger
 Reins
 Luxembourg

 Pymouth
 Amiens
 Luxembourg

 Cardinger
 Reins
 Luxembourg

 Barnets
 Orieans
 Freibus Dijon

 Saint-Malo
 Paris
 Troyes

 Barger
 Orieans
 Freibus Dijon

 Barger
 Bourges
 Dijon

 Barger
 Saint-Litenne
 Milano

 Barger
 Bargera
 Grenoble

 Wora-Gastelz
 Sebastan
 Perpignan

 Valladolid
 Zaragoza
 Ueida

 Stamanca
 Barcelona

30/11/11

First result from Double Chooz

- Result from first six months of data-taking released on 9 Nov
- Best fit:

 $\sin^2(2\theta_{13}) = 0.085 \pm 0.029(\text{stat}) \pm 0.042(\text{syst}) \text{ at } 68\% \text{ C.L.}$

- My comments:
 - Less than 2σ significance on its own
 - Remember: Far Detector only
 - Regard these early results as health checks of the experiments

Future results on $\theta_{\rm 13}$

- RENO expected to release their first results soon
- T2K was set back by the earth quake on 11 March 2011. Expect to start up their beam early next year
- Ramp-up over next few years:
 - Gradual increase of T2K beam intensity
 - Double Chooz Near Detector in 2013
 - Daya Bay 8 detectors eventually
- Expect to see the bulk of the results within the next five years

Stock-taking on neutrino oscillations

- The 10+ last years have moved forward our knowledge about neutrinos in leaps and bounds
- From evidence of v flavour change by Super-K in 1998 and solar neutrino oscillations by SNO in 2002 to solid measurements of the parameters of the two dominant oscillation sectors
- In ~5 years from now, we should know whether $\sin^2 2\theta_{13}$ is > or < 0.01. If early indications are anything to go by, then we will have measured its value
- If so, and especially with NOvA coming online (2013-2014), we will be hunting for the mass hierarchy
- The value of $sin^22\theta_{13}$ will inform plans for upgrades and future experiments to hunt for δ
- Either way, there is food for thought for the theorists: Why is θ_{13} so small or maybe even zero? And why is neutrino mixing so much larger than quark mixing?

Neutrino mass and neutrinoless double beta decay

What do we know about the neutrino mass?

1. Neutrino oscillations don't tell us anything about absolute neutrino masses

What do we know about the neutrino mass?

From neutrino oscillations:

- The heaviest neutrino must be at least at heavy as Δm_{atm}

$$\Delta m_{atm}^2 \approx 2.5 \times 10^{-3} \text{ eV}^2 \implies m_v \ge 50 \text{ meV}$$

What else do we know about the neutrino mass?

• From cosmological observations:

$$m_v < \sim 1 \,\mathrm{eV}$$

• So:

 $50 \text{ meV} < m_v < \sim 1 \text{ eV}$

There are, of course, constraints on the neutrino mass from other observations as well

 Constrained to within two (~accessible) orders of magnitude → a lot of experimental interest in this question

Why are neutrinos so light?

Neutrino mass and the Standard Model

- Standard Model: neutrinos massless
 - Contains only left-handed neutrino field v_L that couples to W and Z
- Straightforward to extend SM: accommodate v masses in the same way as quark and lepton masses
 - Left-right coupling to the Higgs field
 - Add right-handed field v_R , and construct a "Dirac mass term":

$$\mathcal{L}_D = -m_D \Big(\overline{\upsilon_L} v_R + \overline{\upsilon_R} v_L\Big)$$

Dirac and Majorana mass terms

$$\mathcal{L}_{D} = -m_{D} \left(\overline{\upsilon_{L}} \upsilon_{R} + \overline{\upsilon_{R}} \upsilon_{L} \right)$$

- Conserves lepton number L
 - Distinguishes between particle and anti-particle
 - Now $\overline{v}_i \neq v_i$, as for charged leptons and quarks
 - Dirac neutrino
- Neutrino neutral: can also construct a "Majorana mass term" $\mathcal{L}_{M} = -\frac{m_{M}}{2} \left(\overline{v_{R}^{c}} v_{R} + \overline{v_{L}^{c}} v_{L} \right)$

out of the right-handed field v_R and its charge conjugate v_R^c

- Right-handed field has no SM couplings, so no gauge quantum numbers
- Note: m_M is a different constant to m_D

Majorana neutrinos

$$\mathcal{L}_{M} = -\frac{m_{M}}{2} \left(\overline{\upsilon_{R}^{c}} \upsilon_{R} + \overline{\upsilon_{L}^{c}} \upsilon_{L} \right)$$

- \mathcal{L}_{M} mixes neutrino and antineutrino
 - No conservation of lepton number L
 - Majorana neutrino
- If we insist that SM conserve $L \rightarrow$ no Majorana mass terms
- Instead: require only general principles of gauge invariance and renormalisability → expect Majorana mass terms, and hence L violation and Majorana neutrinos
- Note that quarks and charged leptons cannot have Majorana mass terms
 - Mix fermion and antifermion \rightarrow non-conservation of electric charge

Combining Dirac and Majorana

$$\mathcal{L}_{D+M} = -\frac{1}{2} \left(\overline{\upsilon_L} \quad \overline{\upsilon_R^c} \right) \begin{pmatrix} 0 & m_D \\ m_D & m_M \end{pmatrix} \begin{pmatrix} \upsilon_L^c \\ \upsilon_R \end{pmatrix} + hc.$$

See-saw mechanism

$$\mathcal{L}_{D+M} = -\frac{1}{2} \left(\overline{\upsilon_L} \quad \overline{\upsilon_R^c} \right) \begin{pmatrix} 0 & m_D \\ m_D & m_M \end{pmatrix} \begin{pmatrix} \upsilon_L^c \\ \upsilon_R \end{pmatrix} + hc.$$

- If m_M >> m_D, then diagonalising this matrix gives the following eigenvalues:
 - (Nearly) right-handed Majorana neutrino with mass $\sim m_M$
 - (Nearly) left-handed Majorana neutrino with mass $\sim m_D^2/m_M$
- You should find that
 - The solution to the larger eigenvalue is trivial
 - The smaller eigenvalue is, in fact, negative(!) it can be absorbed by a redefinition of the neutrino field

See-saw mechanism

$$\mathcal{L}_{D+M} = -\frac{1}{2} \left(\overline{\upsilon_L} \quad \overline{\upsilon_R^c} \right) \begin{pmatrix} 0 & m_D \\ m_D & m_M \end{pmatrix} \begin{pmatrix} \upsilon_L^c \\ \upsilon_R \end{pmatrix} + hc.$$

- Can choose m_M and m_D such that mass of lefthanded neutrino becomes tiny, consistent with observation, and right-handed neutrino extremely heavy
- Requires neutrinos to be Majorana, i.e. its own anti-particle...
- The see-saw mechanism is the most popular explanation of why neutrinos are so light

Mixing matrix revisited $U_{\text{PMNS}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \times \begin{pmatrix} \cos\theta_{13} & 0 & e^{-i\delta_{\text{CP}}}\sin\theta_{13} \\ 0 & 1 & 0 \\ -e^{-i\delta_{\text{CP}}}\sin\theta_{13} & 0 & \cos\theta_{13} \end{pmatrix} \times \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \times U_{\text{Maj}}^{\text{diag}}$

where

$$U_{\rm Maj}^{\rm diag} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha} & 0 \\ 0 & 0 & e^{i\beta} \end{pmatrix}$$

α and β are Majorana CP-violating phases Choice of two diagonal elements is arbitrary

The weak interactions violate *parity*. Neutrino – matter interactions depend on the neutrino *polarization*.

Slide from B Kayser

 $\sublength{\abovedisplayskip}{3pt} : Can CP \ violation \ still \ lead \ to \\ \mathcal{P}(\overline{v_{\mu}} \rightarrow \overline{v_{e}}) \neq \mathcal{P}(v_{\mu} \rightarrow v_{e}) \ when \ \overline{v} = v?$

A : Certaínly!

Slide from B Kayser

Paul Dirac

So, how can one find out whether the neutrino is a Dirac or a Majorana particle? And what is the mass of the neutrino?

Subject of Lecture 4!

Ettore Majorana

Back-ups