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Recap lecture 2

Neutrino mixing parameters (6, Am?) for “solar” and “atmospheric”
neutrino sectors have been well measured

— Results dominated by SNO, KamLAND (“solar”);
Super-Kamiokande, MINOS (“atmospheric”)

We are seeing the first results from experiments that will tell us about the
subdominant 05

— T2K, MINOS
— More on that today

0,5 must be > 0 for 6 to exist

— But there is another possibility for leptonic CP violation if neutrinos are
Majorana particles

sin?20,; must be >~ 0.01 to be experimentally accessible
— This would open up an avenue for leptonic CPv
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Outline lecture 3

* 0,5 with reactor experiments
* Wrap-up of neutrino-oscillations
* Neutrino mass

 Majorana neutrinos and the see-saw
mechanism
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0,5: Long-baseline accelerator vs. reactor experiments

LBL accelerator experiments: Reactor experiments:
* Look for appearance (v, — v,) in * If_lsccﬂélfczra(;l]i;ag)pearance (Ve V) asa
pUure vy beam vs. L and £  Near detector to measure
* Near detector to measure unoscillated flux
background v.s (beam + mis-id) e P(v_=>V,)independent of §; matter
e P (\,M > v,) =f (6, sign(Am,,?)) effects small

Combination of appearance and disappearance
very powerful if comparable sensitivity

(cy 2000 £8NI %, - 420.0 mi /676.8 km acrao

MINQOS, T2K, NOVA Double Chooz, Daya Bay, RENO
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613 measurements at reactors

4 Far Detector

Near Detector
d =300-400 m d=1-2 km
0(1000) v evts/day 0(100) v evts/day
1.2 “
e - - 7
Present limit from CHOOZ 1 | SER00L Y ESMY ;
(single-detector expt in '90s): _ q ”"\4’\/ KamLAND
sin2(20,5) < 0.15 (90% C.L.) at : 2 J
2 3 a\/2 ! 06 | p(v, > 7,)=1-sin’26,sin> 2L
Am?;; =2.5x107° eV S e Ve S g
(a9 — IR |
Dominant source of 02 :;m:z”;
. . v erarchy
systematic error in CHOOZ: 0 MR RRTT R
Reactor neutrino spectrum 0.1 1 10 100 1000
L(km)
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Neutrino detection ﬂ .

p inverse beta-decay

Inverse beta decay:
V.+p—=n+e’

—» Prompt annihilation

—n + Gd — Gd* +ys (8 MeV)
e Delayed: At ~ 30 us

Neutrino event: coincidence in
time, space and energy

Neutrino energy:
E-=T,+T +m —-m_ +m,,
% e n n p e
H_} . ~— 7
Threshold: 1.8 MeV

Target: Gd-loaded liquid Gadolinium (Gd)
scintillator improves n capture 10-40 keV
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Three reactor experiments
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First result from Double Chooz

Combined analysis of
Double Chooz, T2K and
MINQOS (normal mass ordering)

* Result from first six months of T
data-taking released on 9 Nov Ry S

| dashed: CHOOZ 5/ / -

o 5 B

* Best fit: E a :

Sln2(2813) _ 0.085 + 0.029(8'[21’[) + L0 et Y 030 A 3.?’.’?

0.042(syst)at68%C.L. A TS FEETE PR

l]\llllllllllllll

\' 69%.95% CL (2 dof)

* My comments:

— Less than 20 significance on its ® ! _
own o j :

— Remember: Far Detector only 0.5 \\ EEZXZZ:-TT%’&"&'&%&DC_;

— Regard these early results as ; NV T T
health checks of the experiments 0 01 02 03 04 05

sin22613
A T2K + MINOS best fit

* T2K + MINOS + DC best fit
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Future results on 0

 RENO expected to release their first results soon

 T2K was set back by the earth quake on 11 March
2011. Expect to start up their beam early next year

e Ramp-up over next few years:
— Gradual increase of T2K beam intensity
— Double Chooz Near Detector in 2013
— Daya Bay 8 detectors eventually

e Expect to see the bulk of the results within the next
five years
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Stock-taking on neutrino oscillations

 The 10+ last years have moved forward our knowledge about neutrinos in leaps
and bounds

* From evidence of v flavour change by Super-K in 1998 and solar neutrino

oscillations by SNO in 2002 to solid measurements of the parameters of the two
dominant oscillation sectors

* In~5years from now, we should know whether sin?20, is > or < 0.01. If early
indications are anything to go by, then we will have measured its value

e If so, and especially with NOVA coming online (2013-2014), we will be hunting for
the mass hierarchy

* The value of sin?20,; will inform plans for upgrades and future experiments to hunt
for 6

* Either way, there is food for thought for the theorists: Why is 6,5 so small —or
maybe even zero? And why is neutrino mixing so much larger than quark mixing?
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Neutrino mass
and
neutrinoless double beta decay
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What do we know about the neutrino mass?

1. Neutrino oscillations don’t tell us anything
about absolute neutrino masses
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What do we know about the neutrino mass?

From neutrino oscillations:

Normal hierarchy Inverted hierarchy
v, B R s
[ Vi _“I Az
Amzatm
(mass)? AM?Zn,
V)
/T [
v, —I AT e

e The heaviest neutrino must be at le
heavy as Am_, .

ast at

Am’ =25x107 eV’ = m, =50 meV
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What else do we know about the neutrino mass?

* From cosmological observations:

m, < ~leV

50 meV <m, < ~1eV

There are, of course, constraints on the neutrino mass from other observations as well

e Constrained to within two (~accessible) orders of
magnitude = a lot of experimental interest in this
guestion
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Why are neutrinos so light?
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Neutrino mass and the Standard Model

e Standard Model: neutrinos massless

— Contains only left-handed neutrino field v, that
couples to W and Z

e Straightforward to extend SM:
accommodate v masses in the same way as
guark and lepton masses

— Left-right coupling to the Higgs field

— Add right-handed field v,, and construct a “Dirac

mass term”: -
L, = —mD(ULvR + ”URVL)
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Dirac and Majorana mass terms

L, = —mD(ULvR + ”URVL)

e Conserves lepton number L

— Distinguishes between particle and anti-particle
* Now v, =v,, as for charged leptons and quarks
* Dirac neutrino

* Neutrino neutral: can also construct a “Majorana mass

term” my, (— < —
L, =——2 (URVR +ULVL)

out of the right-handed field v, and its charge conjugate v,

— Right-handed field has no SM couplings, so no gauge quantum
numbers

— Note: m,, is a different constant to m,
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Majorana neutrinos

m. — _
_ M Cc Cc
L, ———2 (”URVR +vaL)

* [,, mixes neutrino and antineutrino
— No conservation of lepton number L
— Majorana neutrino

* |f we insist that SM conserve L = no Majorana mass terms

* Instead: require only general principles of gauge invariance and
renormalisability = expect Majorana mass terms, and hence L
violation and Majorana neutrinos

* Note that quarks and charged leptons cannot have Majorana mass
terms
— Mix fermion and antifermion = non-conservation of electric charge
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Combining Dirac and Majorana

— (0 m ¢
LD+M =—1(UL U;)( D)(UL)+h.C.
2 my, my \v,



See-saw mechanism

— —\( 0 m c
£D+M =—1(UL U]Ce)( D)(UL)+h.C.
2 my, my \v,

* If m,, >>m,, then diagonalising this matrix gives the
following eigenvalues:

— (Nearly) right-handed Majorana neutrino with mass *m,,

— (Nearly) left-handed Majorana neutrino with mass ~m?/
my,

* You should find that

— The solution to the larger eigenvalue is trivial

— The smaller eigenvalue is, in fact, negative(!) — it can be
absorbed by a redefinition of the neutrino field
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See-saw mechanism

— —\( 0 m ¢
LD+M =—1(UL U;)( D)(UL)+I’Z.C.
2 my, my \v,

* Can choose m,, and m, such that mass of left-
handed neutrino becomes tiny, consistent with
observation, and right-handed neutrino
extremely heavy

* Requires neutrinos to be Majorana, i.e. its own
anti-particle...

* The see-saw mechanism is the most popular
explanation of why neutrinos are so light
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Mixing matrix revisited

1 0 0 cosf,, 0 e“=sinf,)| (cosB, sinf, O
Upis =|0  cosB,,  sinf, |x 0 1 0 x|=sinf,, cos6, O|xUys
0 -sinf,, cosB,,) (-e®~sinf, 0  cos6, 0 0 1
where

I 0 O
Us=[0 € 0
0 0 e”

a. and [ are Majorana CP-violating phases
Choice of two diagonal elements is arbitrary

30/11/11 E. Falk, U. of Sussex and Lund U. 22



Q) : Does matter still affectv andv

differently whenv =v?

. /
Cng?? et < ® = .\
W+
i Spin
“'V” e < ° —) QY
W-

The weak interactions violate parity. Neutrino — matter

30/11/11

interactions depend on the neutrino polarization.

Slide from B Kayser
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Q) : Can CP violation still lead to
PV, — v,)=P(v,—>v,) when v=v?

A : Certainly!
Compare Vi ™ Ve
M+ e-
3. Y
l Detector
U, exp(-im,-2 L/2E)
with “V,—>7,”

u-

exp(—imiz L/2E)

Slide from B Kayser
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Paul Dirac

So, how can one find out whether the neutrino
is a Dirac or a Majorana particle?
And what is the mass of the neutrino?

Subject of Lecture 4!

Ettore Majorana
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Back-ups
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