Introduction to Neutrino Physics

Elisabeth Falk University of Sussex and Lund University

Lecture 4

Neutrinoless double beta decay Part 2

Recap lecture 3 neutrino mass

- Neutrino oscillations don't tell us anything about absolute neutrino masses
- From neutrino oscillations and cosmological observations:

 $50 \text{ meV} < m_v < \sim 1 \text{ eV}$

- Straightforward to extend the SM with Dirac masses for neutrinos
 - But this introduces an unnecessary constraint on lepton-number conservation: the neutrino has no electric charge to conserve!
- Can construct a Majorana mass term out of the right-handed field and its charge-conjugate
 - Mixes v and anti-v, so no conservation of lepton number
- See-saw mechanism combines Dirac and Majorana to give an extremely light ~left-handed neutrino and an extremely heavy ~right-handed neutrino

Outline lecture 4

- Beta decay: single and double, with and without neutrinos
- Experimental considerations for a search for neutrinoless double beta decay
- Tour of a few neutrinoless double beta decay experiments

Single beta decay

That's where it started...

$$\mathcal{M}(A,Z) \rightarrow \mathcal{M}(A,Z+2) + 2e^{-} + 2\overline{\nu}_{e}$$

 $2\beta^{-}$ process

Second-order SM process

Two neutrinos emitted: $2\nu\beta\beta$

Rarest kind of radioactive decay:

Only 35 naturally occurring isotopes can decay via $2\beta^{\text{-}}$

Half-lifes of O(10¹⁶ years) and upwards C.f. age of the universe O(10¹⁰ years)

Rarer still:

Can occur also via the $2\beta^+$ process: $\mathcal{M}(A,Z) \rightarrow \mathcal{N}(A,Z-2) + 2e^+ + 2\nu_e$ and via electron capture (EC): $e^- + \mathcal{M}(A,Z) \rightarrow \mathcal{N}(A,Z-2) + e^+ + 2\nu_e$

 $2e^{-} + \mathcal{N}(A,Z) \rightarrow \mathcal{N}(A,Z-2) + 2v$

Neutrino-less double beta decay ($0\nu\beta\beta$)

 $\mathcal{M}(A,Z) \rightarrow \mathcal{N}(A,Z+2) + 2e^{-1}$

- Violates lepton number: $\Delta L = 2$
- Forbidden in the Standard Model

$0\nu\beta\beta$ and neutrino mass

Amplitude for $0\nu\beta\beta$ is proportional to the effective Majorana mass:

$$m_{\beta\beta} = \sum_{k=1}^{3} U_{ek}^{2} m_{k} = |U_{e1}|^{2} m_{1} + e^{i\alpha} |U_{e2}|^{2} m_{2} + e^{i\beta} |U_{e3}|^{2} m_{3}$$

01/12/11

$0\nu\beta\beta$ half-life

Phase-space factor Calculable with small uncertainties Depends on $Q_{\beta\beta}$ and Z

Nuclear Matrix Element Incorporates knowledge of all nuclear structural effects Requires accurate nuclear model Models differ by up to x3 Experimental input could help

The Q value

$\mathcal{M}(A,Z) \rightarrow \mathcal{N}(A,Z+2) + 2e^{-1}$

The sum of the kinetic energies of the electrons is always the same, namely the mass difference $m_{(A,Z)} - m_{(A,Z+2)}$, i.e. $Q_{\beta\beta}$ (the "Q value")

The Q value

$\mathcal{M}(A,Z) \rightarrow \mathcal{N}(A,Z+2) + 2e^{-1}$

The sum of the kinetic energies of the electrons is always the same, namely the mass difference $m_{(A,Z)} - m_{(A,Z+2)}$, i.e. $Q_{\beta\beta}$ (the "Q value")

 $0\nu\beta\beta$ has a Discrete spectrum At the upper end of the $2\nu\beta\beta$ spectrum Considerations for a $0\nu\beta\beta$ experiment

- Which isotope to choose?
 - 35 to choose from...
 - Ex ⁷⁶Ge, ¹³⁰Te, ⁸²Se, ¹³⁶Xe, ¹⁵⁰Nd
- Dealing with backgrounds
- Detector techniques
- A few example experiments

Backgrounds

Cosmic rays

- Natural radioactivity
 - $T_{1/2}(^{238}U, ^{232}Th) \sim 10^{10}$ years
 - $T_{1/2}(0\nu\beta\beta)$ ~10²⁵ years

- Standard-Model $2\nu\beta\beta$
 - Irreducible background

E. Falk, U. of Sussex and Lund U.

Dealing with backgrounds I

- Choose isotope with a high Q value
 - Energy above as much of the background as possible
- Also long • $2\nu\beta\beta$ half-life 5 4.5 48Ca Total ⁸B Solar v's ²¹⁴Bi Events / 10 keV Δ $10^{\frac{1}{2}}$ 3.5 150Nd 10^{4} 96Z 100Mo 3 10^{3} 82Se ⁰Th 116Cd 226 Ra 130Te 2v Double Beta 2v Double Beta excited 2.5 10^{2} 136Xe 0v Double Beta 124Sn 110Pd 10 2 76Ge 0.5 1.5 2 2.5 3 3.5 4 4.5 0 1 Energy (MeV) 1.5 50 n 20 30 40 10 natural abundance (%)

Maximising the decay rate

$$(T_{1/2})^{-1} = G_{0\nu} |M_{0\nu}|^2 |m_{\beta\beta}|^2 / m_e^2$$

- The more isotope mass you can put in your experiment, the more decays there will be
 - Choose isotope with high natural abundance
 - Choose isotope that is "cheap" per unit mass
 - Consider isotope enrichement

Maximising the decay rate

$$(T_{1/2})^{-1} = G_{0v} |M_{0v}|^2 |m_{\beta\beta}|^2 / m_e^2$$

Dealing with backgrounds II

- Cosmic rays
 - Underground lab

- Natural radioactivity
 - Radiopurity
 - Choice of detector materials
 - Cleanliness
 - Background identification
- Standard-Model $2\nu\beta\beta$
 - Irreducible background
 - Good energy resolution

Detector techniques

• Liquid/gas Xe TPC

A controversial claim

- Klapdor-Kleingrothaus et al., 2004
- High-Purity Ge detector
- Found unknown line at 2038 keV with 4.2σ significance
- T_{1/2} ~ 10²⁵ y
- Cannot be dismissed out of hand, but
 - Background underestimated
 - Unknown line in the same region
 - Problem with relative intensities of ²¹⁴Bi lines

 $< m_v >= 0.1 - 0.9 \,\text{eV}$ (KKDC, 2004)

SNO+

- Re-use old SNO (Sudbury Neutrino Observatory) vessel in Creighton nickel mine, Canada
- Candidate isotope ¹⁵⁰Nd dissolved in liquid scintillator
 - ⁹⁶Zr also interesting
- Also other v sources, e.g.:
 - Low-E solar neutrinos: neutrino-matter interactions; solar composition
 - Reactors: neutrino oscillations
 - Supernova neutrinos
- Data collection to start in 2013

Art by Don Foley Copyright (C) 2006, National Geographic Soc Used by permission

NEMO3: topological signature

^{∆t~0 ns} Signal

Internal (e.g. ²¹⁴Bi)

 $\Delta t \ge 3 \text{ ns}$

Nemo3 (Modane lab) External (e.g. ²⁰⁸Tl, neutrons)

- Measure final-state observables:
 - Individual electron energies $(E_1 + E_2 = Q_{\beta\beta})$
 - **Electron trajectories and vertices**
 - Time of flight
 - Angular distribution between electrons
- Background rejection through particle ID: e^{-} , e^{+} , α , γ ٠
- Has made many (world-leading) measurements of • $2\nu\beta\beta$ half-lives
 - ¹⁰⁰Mo^{, 130}Te^{, 82}Se^{, 116}Cd^{, 150}Nd^{, 48}Ca^{, 96}Zr

SuperNEMO

- Successor to NEMO3
 - Again, foils + tracking+ calorimetry
- Planar and modular: 20 modules x 5 kg of enriched isotopes
 - 10x NEMO3
- Tracking: Drift cells in Geiger mode
- Calorimeter: Solid scintillators + PMTs
- Surrounded by water shielding
- Modane lab in France
- Next step: build one "demonstrator" module

KamLAND-Zen

Reuse old KamLAND detector, with ¹³⁶Xe as candidate isotope

Balloon to optimise light yield/E resolution vs. amount of ¹³⁶Xe

CUORE/CUORICINO: the bolometric way

Many players lined up

Finally: other limits on neutrino mass

Measurement	Origin of Limit	Limit
Tritium Decay	$m_{\nu_e}^2$	< 2.0 eV
π^+ Decay	$m_{\nu_{\mu}}^2$	$< 0.17 { m ~MeV}$
τ Decay	$m_{\nu_{\tau}}^{2'}$	$< 18.2 { m ~MeV}$
SN1987A Time-of-Flight	$m^2_{(\nu_e \rightarrow \nu)}$	< 5.7 eV
Terrestrial Time-of-Flight	$m^2_{(\nu_e \rightarrow \nu)}$	$< 50 { m MeV}$
Cosmology	$\sum_{i} m_{\nu_i}$	< 0.66 eV

From PhD thesis by B. Still, 2009

Recap

- Neutrinoless double beta decay, if it exists, would violate lepton-number conservation by 2
- Half-lives upwards of ~10¹⁸ years
- Neutrinoless double beta decay is the only experimental technique known to be able to reveal whether the neutrino is Majorana
- Many experiments in the pipeline

Back-ups