
The SALTRO Detector Control System (DCS) raw data format

Version Comment
20130319 First draft proposal
20130411 specify data words
20130422 number of types and identifiers
20130502 all data are 2 bytes, removed type=software, 0=all removed, split ADC
20140305 Test socket board added. Updates a few things.
20140522 Handling of scanning and automatic power off

The data format is identical for downloading settings and uploading readings.
For reloading already downloaded and locally stored settings will eventually short commands exist.

The format described here is between: server running on PC – DCS master – DCS CPU on 5to1 card.
The format used between: user interface - server running on PC is described in a separate document TO
BE WRITTEN!
The description of the DCS system is in a separate document. TO BE UPDATED!
(old versions:
http://www.hep.lu.se/eudet/saltro/i2c-control-system.pdf
http://www.hep.lu.se/eudet/saltro/lvpanel-2.pdf
These documents are the proposals and are not describing the system as of today!
)

The different parts has its own unique identifier defined by
PC server id (6)
master id (7)
5to1 box id (0-3)
cpu address (1-5)
device types as given below
device identifiers which identifies the actual physical device as given below

Hardware device types
1 temperature sensor
2 ADC GET – OBSOLETE!
3 ADC IN MCM – Adc that measure the voltages before the regulators
4 ADC OUT MCM – Adc that measure the voltages after the regulators
5 I/O register – power off/on MCMs
6 DAC – settings of e.g. SALTRO reference voltages
7 CPLD – the progammable device on the MCM

Software device types
8 Command
9 ACK CHANGES – sent by PC server when SCANEND received
10 FAIL – reason for automatic power off

http://www.hep.lu.se/eudet/saltro/i2c-control-system.pdf
http://www.hep.lu.se/eudet/saltro/lvpanel-2.pdf

Device identifiers are given below for each device type.

Device identifiers are given in hex (nm)

Temperature sensor identifiers
n1 MCM1
n2 MCM2
n3 MCM3
n4 MCM4
n5 MCM5
n6 LV panel

n=0: temperature value (read only) value is raw value as read from tmp101
n=1: low value set in tmp101, value is raw value as given by tmp101
n=2: high value set in tmp101, value is raw value as given by tmp101
n=3: shutdown limit in degrees
n=4: number of cycles above shutdown limit before shutdown

The raw value from tmp101 is the upper 10 bits in a 16 bit word. The uppermost 8 bits are degrees, the
lower 2 bit values are for 0 0.25,0.5,075 degrees.

ADC identifiers
n0 IN n where n=1 to 8 (voltage regulator IN)
nm IN nm where n=1 to 8 (voltage regulator IN) after resistor, m = 1 to 5 (MCMm)
nm OUT nm where n=1 to 8 (voltage regulator OUT) after regulator, m = 1 to 5 (MCMm)

There is no write for these device identifiers, they can only be read. Values are the raw values as read
from the ADC.

n6 IN Shutdown limits in mA for n=1 to 8 (voltage regulator IN).
This value is converted by the PC server to a voltage difference before sent to slave(s), the
voltage depends on the resistor value.

96 IN Number of cycles above shutdown limit before shutdown, common to all regulators.

I/O register identifier
0m Voltage regulator where m = 1 to 5 (I.e. voltage regulator for a given MCMm, one bit per

voltage). Bit = 0: power off, bit = 1: power on.
07 Testsocketboard (=7) PCA settings (bit pattern)

0 = polarity
1 = shaper3
2 = shaper2
3 = shaper1
4 = preampmode
5 = shutdown
6 = gain2
7 = gain1

17 Testsockerboard (=7) Chip address (bit pattern)

0 = chip0
1 = chip1
2 = chip2
3 = fec0
4 = fec1
5 = fec2
6 = fec3
7 = fec4

DAC identifier
cm MCM number m = 1 to 5, c = channel 1 to 8 on the DAC,

1 = decay
2= refP
3 = inCM
4 = refN
5 = outCM

c7 Testsocketboard (=7) c = channel 1 to 8 on the DAC
1 = decay
2= refP
3 = inCM
4 = refN
5 = outCM
6 = bias

CPLD identifier – NOT YET IMPLEMENTED

Command identifier

Commands can only be sent from a master/server.

11 Scan temperature interval in seconds (0 = no scanning)
12 Scan adc interval in seconds (0 = no scanning)
13 Status of current value (between 0-interval) in temperature scan interval (readonly)
14 Status of current value (between 0-interval) in adc scan interval (readonly)
15 Which CPUs (1-5)/LV board to scan for temperature (bit pattern 0LCCCCC0).
16 Which CPUs (1-5) to scan for ADC (bit pattern 00CCCCC0).

1 power on according to already downloaded settings – NOT IMPLEMENTED
2 power off all regulators – NOT IMPLEMENTED
3 load all DACs with already downloaded settings – NOT IMPLEMENTED
4 configure temperature sensors with already downloaded settings – NOT IMPLEMENTED
5 do 1,3, and 4 – NOT IMPLEMENTED
6 send changes since last reading – NOT IMPLEMENTED
7 store current configuration as default – NOT IMPLEMENTED
8 recall default configuration – NOT IMPLEMENTED
9 ping

10 echo

ACK CHANGES identifiers

Sent by PC server as a acknowledge of received ADC values. Only needed after receiving values
changed since last time sent. Used by 5to1 CPU to update the ADC values last sent.

11 DUMMY

FAIL identifiers

When sent by 5to1 CPU: indicates a FAILure. Currently only temperature and high currents, which
caused an automatic power off.

01 Failed temperatures which caused an automatic power off – bit pattern:
1-5 MCM number
6 LV panel

02 Failed high currents which caused an automatic power off – bit pattern:
1-5 MCM number

When sent by PC server, the bits tell which FAIL bit to clear.

01 clear temperature fail status – bit pattern
1-5 MCM number
6 LV panel

02 clear high current fail status – bit pattern
1-5 MCM number

Data Format

Data blocks are transferred in binary

Word content bytes comment
0 preamble 2 0xA5A5
1 length 2 length in bytes – excluding itself
2 destination 1 bit 0-2, cpuaddress

0: broadcast to all 5to1 CPUs for the boxid in bit 3-4
1-5: 5to1 CPU
6: monitor computer
7 : master CPU

bit 3-4, boxid if 5to1 CPU
bit 3-6, 4 LSB of MAC address if master CPU or monitor computer
bit 7, not used set to 0

3 source 1 bit 0-2, cpuaddress
1-5: 5to1 CPU
6: monitor computer
7: master CPU

bit 3-4, boxid if 5to1 CPU
bit 3-6, 4 LSB of MAC address if master CPU or monitor computer
bit 7, not used set to 0

4 packet number 1 incremented by source for each packet sent (individual per dest)
5 instruction 1 instruction: e.g. read,load,status.
6 time stamp 2 in seconds
7 device types 1 number of device types in packet

Then follows device types, identifiers, and data. There can be more than one device types, and for each
device type more than one identifier. Types and identifiers are 1 byte, data 2 bytes.

(1 byte, 1 byte,1 byte, 2 bytes,1 byte, 2 bytes,...)
Device type1, number of identifiers, Device identifier1, data1, device identifier2, data2 ..
...
Device typeN, number of identifiers,Device identifier1, data1, device identifier2, data2 ..

Instructions:
0 = null instruction
1 = load
2 = read
3 = load/read
4 = status
5 = changes
6 = acknowledge
7 = scanend (sent by master when an adc scan has ended, expects ack_changes back)
8 = status of temperature and current scan, CPU will return values of the limit counters

NOTE: Hardware and Software/Command types may not be mixed.
The detailed data size and format for a device identifier is defined by the device type in the identifier
word as given below.

In case of odd number of bytes is a 0-byte inserted to get an even number of bytes
Last-1 length 2 length in bytes – excluding itself (same as 1)
Last checksum 2 xor of all 2-byte words

Number of devices and data sizes per device

Device bytes LV-board content
I/O register 2 8 Voltage regulators bit pattern ON/OFF
ADC 2 8 12 bit ADC value INn
ADC 2 40 12 bit ADC value INnm
ADC 2 40 12 bit ADC value OUTnm
Temperature 2 6 temperature in steps of 0.25 degrees
DAC 2 40 12 bit DAC value (DACcm)

Devices per LV board 142 *2 bytes = 284 binary data bytes from each LV board
Per pad module 710
3 pad modules 2130

Commands 2

Server and monitor computer

The format between the monitor&control PC server and the master box is the same as described above.
The communication is over ethernet. Therefore may the data packet length not exceed the ethernet
packet size of 1500 bytes. The monitor and controlling server can be on different computers. The main
user interface is proposed to be DOOCS. For a local standalone control will a simple user interface be
available (written in python). A user interface has been written for the testsocketboard, which is used
for testing carrier boards.

Numbering

PRELIMINARY
The numbering is as seen from the outside of the TPC. The numbering is increasing in the direction of
a particle coming from a thought collision point in the center, and is anticlockwise in phi.

Chains selection on the Low Voltage (LV) board:

The connection between the LV board/MCMs to the 5to1 CPUs is I2C. There are eight different I2C
chains:

Chain Content Available on
0 none
1 Regulators + tmp101 LV protoLV
2 ADC1-8 LV protoLV
3 ADC9-16 LV -
4 MCM1 LV protoLV
5 MCM2 LV protoLV-Testscocketboard
6 MCM3 LV -
7 MCM4 LV -
8 MCM5 LV -

The chain is selected via an I2C I/O register. This IO register is accessible by the master/server. The
5to1 CPU selects the chain according to the hardware device address.

Some timing:
ReadADC 26 ms at 100kHz

SendADC-RS485 75ms 38400 baud
Send ethernet 20ms prescalePrim 10 = 4:1

prescaleSec 000 = 8:1
20*10^6/32 =~ 1Mbit/sec

	The SALTRO Detector Control System (DCS) raw data format

