Searching for Vector Dark Matter at Fixed Target Experiments

Knut and Alice Wallenberg Foundation

Taylor R. Gray^a In collaboration with Riccardo Catena^a aChalmers University of Technology Supported by a research grant from the Wallenberg foundation IDM 2022

Sub-GeV Dark Matter

- Fixed target experiments can probe sub-GeV DM
- Future fixed target experiments such as LDMX will reach new sensitivities in the sub-GeV mass range.

Sub-GeV Dark Matter

- Fixed target experiments can probe sub-GeV DM
- Future fixed target experiments such as LDMX will reach new sensitivities in the sub-GeV mass range.
- How about **spin-1** DM?

The Goal

- Broaden the already existing studies on sub-GeV DM at fixed target experiments.
 - Extend the SM with the most general renormalizable spin-1 DM model compatible with Lorenz and Gauge symmetry.

If $2m_X < m_A$, s-channel dominates DM annihilations.

Relic Targets of DM Models

Taylor R. Gray | IDM Vienna 2022

Experimental Limits/Projections on DM Models

only b₅ non-zero

Taylor R. Gray | IDM Vienna 2022

Experimental Limits/Projections on DM Models

Taylor R. Gray | IDM Vienna 2022

Experimental Limits/Projections on DM Models

Taylor R. Gray | IDM Vienna 2022

Summary and Future Work

- Extending the current landscape of sub-GeV DM models considered in the context of fixed target experiments (such as LDMX) and more
- Focused on spin-1 sub-GeV DM where $m_{A'} = 3m_X$
- Complementarity between experimental limits

- Off-shell dark photon ($m_{A'} < 2m_X$)
 - Visible decay limits
- Spin-1 DM w axial + vector boson mediator
- Freeze-in spin-1 DM

Thank You!

Backup Slides

• Larger DM mass \rightarrow Larger relic abundance \rightarrow Larger couplings

Taylor R. Gray | IDM Vienna 2022

Relic Target Calculation

- DM relic abundance consistent with Planck
 - $\Omega h^2 \approx 0.12$

- Assume DM is produced through freeze-out.
- 3m_X = m_A,
- DM relic density dominantly set by on-shell s-channel A' exchange:
 - $\bullet \qquad XX \to A' \to f \overline{f}$

Experimental Reach

- Place exclusion/projection bounds on parameter space.
 - Current + future experiments
 - Cosmological bounds

Hadronic Resonances

- If DM freezes-out after the QCD phase transition (~150 MeV), DM annihilates to hadronic final states rather than to quarks.
 - Must consider for $m_X \leq 3 GeV$

$$\sigma v_{XX \to A' \to \text{hadrons}} \approx R(s) \sigma v_{XX \to A' \to \mu^- \mu^+}$$
$$R(s) \equiv \sigma_{e^+e^- \to \text{hadrons}} / \sigma_{e^+e^- \to \mu^+ \mu^-}$$

Why $BR_{A' \rightarrow XX} > BR_{A' \rightarrow \overline{ff}}$ is a good assumption

Taylor R. Gray | IDM Vienna 2022

17

$$P_{ann} \equiv f(z) \frac{\langle \sigma v \rangle_{\chi\chi \to f\bar{f}}}{m_{\chi}}$$
$$P_{ann} \lessapprox 3.2 \times 10^{-28} cm^3 s^{-1} GeV^{-1} \text{ (Planck 2018)}$$

- CMB anisotropies measurements by Planck constrain the annihilation parameter, P_{ann}
- Limits are placed on DM annihilation under the assumption that the power deposited is directly proportional to that injected at the same redshift/energy.
 - with efficiency f(z)

p-wave: arXiv:1308.2578 s-wave: arXiv:1506.03811

Electron Beam Dumps

E137 arXiv:1406.2698

- Dark matter produced from electron-target collisions
- 20 GeV beam incident on a set of aluminum plates interlaced with cooling water.
- Downstream detector

arXiv:1710.00971

- 100 GeV electron beam incident on a lead target
- Event: single electron produced and missing energy

Proton Beam Dumps arXiv:1107.4580

 DM scatterings mimic neutrino scatterings! (Neutral current-like elastic scatterings) Mini-Boone arXiv:1807.06137

- Designed to study short-baseline neutrino oscillations
- 8 GeV proton beam incident on a steel target
- Peak ~ 800 MeV (ρ mass)

LSND arXiv:hep-ex/0101039

- pions produced by impacting an 800 MeV proton beam onto a water or metal target
- $\pi^0 \to A' \gamma, A' \to XX$

٠

FIG. 2. DM production channels relevant for this search with an 8 GeV proton beam incident on a steel target.

BaBar arXiv:1702.03327

- Search for single photon events in e^+e^- collision data
- BABAR detector at PEP-II B-factory
- Large missing energy/momentum
- Exclusions for $m_{A'} \leq 8 \text{ GeV}$
- $e^+e^- \rightarrow \gamma A', A' \rightarrow XX$

Calculating Dark Matter Abundance: The Boltzmann Equation $\dot{n} + 3Hn = R$ Particle Physics

n: number density

H: Hubble Rate (Universe's Expansion)

Universe's Expansion

- *R*: Interaction Rate Density (# interactions per time and volume)
 - Includes all annihilations and productions
- More convenient to define Y and x

•
$$Y \equiv \frac{n}{s}$$
, $X \equiv \frac{m}{T}$

s: entropy density

Freeze-Out Calculation

For the process 12 $\leftrightarrow \chi\chi$ • The Boltzmann equation: • $\frac{dY}{dx} = \frac{\lambda(x)}{x^2} < \sigma v >_{\chi\chi \to 12} [(Y_{\chi}^{eq})^2 - Y^2] > 10^{-3}$ • Calculate freeze-out temperature T_f

• After T_f , $Y_{\chi} \gg Y_{\chi}^{eq}$: • $Y_{\infty}^{-1} = Y_f^{-1} + \int_0^{T_f} \lambda < \sigma v >_{\chi\chi \to 12} dT$

 10^{-3}

10-2

 10^{-1}

10²

10³

Equilibrium

10¹

100

х

Dark Matter Evidence and Overview

Evidence:

- Galaxy clusters
- Rotation curves of galaxies
- Large scale structure
- Cosmic Microwave Background (CMB)

Overview:

- Abundance $\Omega h^2 \approx 0.12$ (Planck)
- Interacts gravitationally with ordinary matter
- If it interacts non-gravitationally with ordinary matter it does very weakly