Introduction to detector physics
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Outline

* Lecture 1 and 2: the generic general purpose
high energy detector

- The ATLAS experiment

* Lecture 3 and 4: particle identification
detectors, detector simulations, and the Time
Projection Chamber

- The ALICE TPC
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ATLAS detector
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Goal of detectors

 The goal of the experiment is to provide the 4
momentum vector for (ideally) each particle
produced in the collision p = (E, p)

* We just remind here the relativistic definitions:

- B=Ipl/E
- y=E/m
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Executive summary (2/3)

Typical Collider ;

Detector Muon Detectors

* track muon s after shielding

Magnetized Iron

Hadronic Calorimeter
* energy of hadrons

E-M Calorimeter
* energy of electons/photons

Solenoid Magnet

Beam Pipe

Tracking Detectors
* ionization tracks of charged particles



Layers, like an onion
(even everybody loves cake)
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Tracking chambers
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Energy loss In matter:
the Bethe-Bloch equation

_dE_Dg'n. [m (M) g @] : (4.9a)
dx B 1 2

where x is the distance travelled through the medium,

4 o’h? s 5
D= - =5.1x 10" MeVcem-, (4.9b)
m, is the electron mass, B = v /c and y = (1 — %)~ 2. The other constants refer to the
properties of the medium: n, is the electron density, / is the mean ionization potential
of the atoms averaged over all electrons, which is given approximately by / = 10Z eV
for Z greater than 20, and § is a dielectric screening correction that is important
only for highly relativistic particles. The corresponding formula for spin—é particles

* Depends only on By (but y also only depends
on [3)

* |t Is useful to remember that By = p/m, since
B= p/E and y=E/m



Examples of dE/dx
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Figure 4.6 lonization energy loss for muons, pions and protons on a variety of materials. The
units of d£'/dx are explained in the text. (Reprinted by permission of Institute of Physics (IOP),
Fig. 27.7, W.-M. Yao et al., Journal of Physics, G33, 1, 2006.)



Can we understand parts of the
Bethe-Bloch formula?

dE  Dg’n, 2m.c’ By’ , 8
JAE_Daney, (2me BT g S0 (4.9
dx B? 1 2
where x is the distance travelled through the medium,
4 a’h? e 5
D= =5.1 x 1077 MeV cm", (4.9b)
n,

m, is the electron mass, 8 = v /c and y = (1 — %) '/, The other constants refer to the
properties of the medium: n, 1s the electron density, / 1s the mean 1onization potential
of the atoms averaged over all electrons, which 1s given approximately by I =10Z eV
for Z greater than 20, and § 1s a dielectric screening correction that is important
only for highly relativistic particles. The corresponding formula for spin—é particles



What materials to use

TABLE 4.2 The minimum ionization energy losses (—dE/dx),, for
various materials and their dependence on the density p in gcm ™.

EJ eeeee t % P (_%)mm _.r_IJ (:lj_t)a

(MeVem ™) (MeVg 'cm?)
H* 1 0.063 0.26 4.12
C 6 2.26 4.02 1.78
Al 13 2.70 4.37 1.62
Fe 26 7.87 11.6 1.48
Pb 82 11.35 12.8 1.13

* Liquid hydrogen at 26 K. The other materials are solids.

* To minimize material (that causes distortions)
one often uses gas detectors for tracking (and
often nowadays silicon detectors)



Example of gas detectors
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Figure 4.11 A group of three planes of a MWPC (see text for details). (From Particles and
Nuclei, Povh, Rith, Scholz and Zetsche, Fig. A7, 1999. With kind permission of Springer
Science and Business Media.)



Amplification to get a signal out

1012 i
Geiger-Miiller
region
\
Region of limited
10](] o - proportionality I
o Recombination region ‘ ‘
= \ \
o Ionization chamber region ‘ | |
= 8 |_ —
5 10 | | \
o |- > >
<
g Region of proportionality ‘
— . &
o | Discharge region
b
a 6 |— ]
10
2 \
'z
o
= \
g ‘
i 104 o particles | —
b
1)
2 |
g
5 |
Z Electrons |
i = | B
\
|
10° | I |
0 250 500 750 1000
V (volts)

Figure 4.10 Gas amplification factor as a function of voltage V applied in a single-wire gas
detector, with a wire radius typically 20 wm, for a strongly ionizing particle («) and a weakly
ionizing particle (electron).



Silicon semi-conductor detectors

Pixelated 300 pm thick Si
detector chip (256 x 256

pixels, 55 um pitch)

* Extremely good resolution and segmentation
especially for pixel detectors as shown here

» Semi-conductor: low ionization potential and
easy to read out



Electromagnetic calorimeter
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Energyloss of electrons

Nucleus Nucleus

Figure4.7 Dominant Feynman diagrams for the bremsstrahlung process
e+ (Z,A)—>e +y+(Z,A).

—dE/dx = E /Ly.

The constant Ly 1s called the radiation length and is given by

1 h\’ . 183
—=4|\— ) Z(Z+ Daoa’'n,In | — ),
Lp mce Fha

(4.14)

(4.15)

where n, is the number density of atoms/cm’ in the medium. Integrating (4.14) gives

E=FE,exp(—x/Lg),

(4.16)



Energyloss of photons

Z

Nucleus Nucleus

Figure4.7 Dominant Feynman diagrams for the bremsstrahlung process
e+ (Z,A)—>e +y+(Z,A).

—dE/dx = E /Ly.

The constant Ly is called the radiation length and is given by
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(4.14)

(4.15)

where n, is the number density of atoms/cm’ in the medium. Integrating (4.14) gives

E=FE,exp(—x/Lg),

(4.16)



Scales wit 1/mass?
- only relevant for electrons
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Figure4.7 Dominant Feynman diagrams for the bremsstrahlung process
e+ (Z,A)—>e +y+(Z,A).

—dE/dx=E /L. (4.14)
The constant Ly 1s called the radiation length and is given by

L, ot 1o (183 ils
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where n, is the number density of atoms/cm’ in the medium. Integrating (4.14) gives

E=E,exp(—x/Ly), (4.16)



And photons:

€+

Nucleus Nucleus

Figure 4.9 The pair production process y + (Z, A) = ¢ + e 4+ (Z, A).

(4.20)

J;Jffz'r —

for E, 3> mc*/aZ'”?, where Ly is the radiation length. Substituting these results into
(4.19) gives

I(x) = I, exp(—7x/9Ly), 4.21)



How the EMCAL works




Choice of material: large Z
e.g. Pb crystals!




Showers In the crystal




Organize crystals in detectors
Light output Is proportional to
energy deposit
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Figure 4.17 Approximate development of an electromagnetic shower in a sampling calor-
imeter assuming the simple model of the text. The calorimeter consists of alternate
layers of lead (Pb) and a scintillator (Sc), the latter attached to photomultipliers (one
only shown).



Hadron calorimeter
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We need to absorb the hadrons

* We use the strong interactions so it means
that the particle interacts inelastically with
nucleons in the detector material



Hadronic reactions with nuclel

4.3.1 Short-range interactions with nuclei

For hadrons, the most important short-range interactions with nuclei are due to 10~
the strong nuclear force, which unlike the electromagnetic interaction is as important
for neutral particles as for charged ones. For the simplest nucleus, the proton, the
resulting reactions are of two types: elastic scattering such as
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T +p—o>n +p, (4.4a)

where for illustration we have taken the incident particle to be a 7w~ ; and inelastic
reactions such as

n 4p—=at+a +7°+n (4.4b)
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7 +p—=> K+ A, (4.4¢)
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in which the final state particles differ from those in the initial state. At high energies, 10—], 1 Un 1 U+l 10+2 l 0+3
many inelastic reactions are possible, most of them involving the production of several

particles in the final state. The total cross-section Momentum (GE',V/’C)
Otor = O + Cinet (4.5)




Hadronic interactions with nuclel

TABLE 4.1 Nuclear cross-sections and the associated collision lengths /.
and absorption lengths [, for incident neutrons with energies in the range
80-300 GeV. The values for protons are approximately the same.

Element V4 Nuclear cross-section (b) Interaction length (cm)
T ot T inel f-r '[Iu

H* 1 0.039 0.033 687 306

C 6 0.331 0.231 26.6 38.1

Al 13 0.634 0.421 26.1 3904

Fe 26 1.120 0.703 10.5 16.8

Pb 82 2.960 1.770 10.2 17.1

* Liquid hydrogen at 26 K. The other materials are solids.
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Basic calorimeter
1. scintillating plates, 2. lead
absorber
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32 GeV pion in Digital Hadronic
calorimeter (CALICE collaboration)
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Muon chamber
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The muon chamber Is easy!

"he muons are basicly tracks that goes
through all the material

Too large mass for EM cal

Not interacting strongly so it also passes
nadron caorimeter

_ifetime Is so long that it does not decay (this 1
does because of its large mass)

So the muon chamber is a normal tracking
chamber




Summary

Tracking Electromagnetic Hadron Muar
charmber calorimeter  calorimeter chamber

Innermost Layer... P ...Outermost Layer

* Tracking: energloss due to EM interaction with
electrons in matter

« EMCAL: dE/dx due to EM interaction with nuclei

e HCAL: dE/dx due to STRONG interaction with
nuclei



The what Is this quiz!

trometer

The dashed tracks
are invisible to
the detector
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Run Number: 191426, Event Number: 86694500

Date: 2011-10-22 15:30:29 UTC

35 ET (GeV)




Run Number: 190300,

Event Number: 60554334 — e N A - / '_\ l
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Date: 2011-10-04, 05:25:26 CET

EtCut>0.3 GeV
PtCut>3.0 GeV
Vertex Cuts:

Z direction <lem
Rphi <lem

Muon: blue
Cells: Tiles, EMC
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1A EXPERIMENT

Run Number: 201006, Event Number: 55422459 |

Date: 2012-04-09 14:07:47 UTC
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Run Number: 160736, Event Number: 3446804

Date: 2010-08-04 05:18:18 CEST

— 3ET(GeV)




Run Number: 160736, Event Number: 3446804
Date: 2010-08-04 05:18:18 CEST

Jiy—ee candidate in 7 TeV collisions
M =3.17 GeV
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What about particles that do not
Interact?

 What if we created a completely new heavy
particle that doe not interact?

e How would we observe that?



The reason for the 41t design
(Simulated event)

ATLAS Atlantis Event: susyevent




Simulated SUSY Missing
Transverse Energy (MET) event
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