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Many difficult aspects about the

strong force

* The strong interaction is very complex!

couples strong:

Q)

Complex
vacuum:
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Feynman diagram
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Figure 1.16 Lowest-order Feynman diagram for the process e™ +¢~ — ™ 4+ .



Feynman diagram
A calculational tool!

Figure 1.16 Lowest-order Feynman diagram for the process e +¢ — " 4+ .
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Feynman diagram of quark-quark
scattering

u,b

u,r

s,b S,

Figure 7.1 Example of quark—quark scattering by gluon exchange, where the gluon is
represented by a ‘corkscrew’ line to distinguish it from a photon. In this diagram the quark
flavour u or s 1s unchanged on gluon emission, but the colour state can change, as shown.



Color flow

u,b

u,r
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Figure 7.1 Example of quark—quark scattering by gluon exchange, where the gluon is
represented by a ‘corkscrew’ line to distinguish it from a photon. In this diagram the quark
flavour u or s 1s unchanged on gluon emission, but the colour state can change, as shown.



Special QCD processes because
gluons are colored!

(a) (b)

Figure 7.2 The two lowest-order contributions to gluon—gluon scattering in QCD.



The strong coupling

5b

Figure 7.1 Example of quark—quark scattering by gluon exchange, where the gluon is
represented by a ‘corkscrew’ line to distinguish it from a photon. In this diagram the quark
flavour u or s 1s unchanged on gluon emission, but the colour state can change, as shown.



The coupling Is not fixed but runs!
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eieevi Q) Is the 4 momentum transfer

In fact it becomes ~1 at the scale A,,~200 MeV



Screening/running of the coupling In
electromagnetic collisions

(a) (b)

Figure 7.5 A more complicated quantum fluctuation of the electron, together with the
associated exchange process.
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Due to (polarized) fluctuations the
vacuum screens the charge!
(vacuum ~ dielectric medium)

Notice the /onrder: -+, -

e
| &™)
/ \\ ®

€~ - —— ! £~
| & | -
N4
+
ig . schematic diagram representing the polarization of the molecules of a dielectric
y a positive charge placed within it.

The effect is measurable: ...

At low energy; o ~ 1/137

At high energy transfers (mZ): a ~ 1/127
This change is fully described by the theory!
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In QCD there Is anti-screening!
(bare/’naked” charge is smaller!)

q q q q

q q q q
(a) (b)

Figure 7.7 The two lowest-order vacuum polarization corrections to one-gluon exchange in
quark—quark scattering.
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From Leif's notes

Screening Screening

Figure 3.60: lllustration of screening of the colour charge of a quark via the creation of a virtual

Figure 3.59: Illustration of screening of the electric charge of the electron via the creation of a
qq pair.

virtual ete™ pair.

Antiscreening

~

*

¢
®

NB! In the first calculation (that later gave
the nobel prize) they found the wrong
sign and gluons was also screening.

@

So this is not easy to understand.

+

RN

Figure 3.61: llustration of antiscreening of the colour charge of a quark via the creation of a

virtual pair of gluons.



Full result for QCD
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2 limits of QCD: soft and hard!
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CONFINEMENT

Non-perturbative physics

(know the equations but not how to
solve them)

Example: Hadrons and their production
Solution: phenomenological model, e.g.
Lund string model

1
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Q[GeV]

ASYMPTOTIC FREEDOM

Perturbative physics
(theoretical predictions)
Example: Quark scatterings — jets
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Example of 2 jet event

4
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Figure 7.10 Basic mechanism of two-jet production in electron—positron annihilation.



2 et event In e*+e




What about the ratio?

Figure 7.10 Basic mechanism of two-jet production in electron—positron annihilation.
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Figure 1.16 Lowest-order Feynman diagram for the process e”™ +e¢~ — ™ + ™.
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What about the ratio?

R #11/9
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Figure 7.16 Comparison between the measured values of the cross-section ratio R of
Equation (7.18) and the theoretical prediction (7.22) for three colours, N = 3. The dashed
line shows the corresponding prediction (7.21) omitting small contributions of order «,. (Data
from the compilations of Wu, 1984, and Behrend et al., 1987.)

_ . There are 3 types of
Figure 1.16 Lowest-order Feynman diagram for the process e™ + ¢~ — p" +pu~. q u a,r k(C h arg e) S :
red, green, blue!



Proton-proton 2 jet event
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3 Jet event: hard gluon

e
£ 4

Figure 7.13 Schematic diagrams representing (a) two-jet and (b) three-jet formation in
electron—positron annihilation in the centre-of-mass frame.
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Do you understand It?
The 4 essential points

 What Is the difference between
the EM and the strong
Interaction?

* Why Is the strong force strong?
* What Is confinement?
* What I1s assymptotic freedom?



A deeper look at fragmentation



What happens when you have a 3
jet event — Think time:-)




What happens when you have a 3
jet event!
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Figure from Leif's notes



3 small exercises

» a) Draw a series of Feynman diagrams for an Q
(sss) decay to a p (uud)

* b) If the pion was very light could a 2° (uds)
decay strongly to a A (uds)

» ¢) Draw a Feynman diagram for a p-p collision in
which there Is a A in the final state (via a strong
process and conserving strangeness)

» d) How can a color neutral J/y be produced by
gluons?



Deep Inelastic scattering

* At high energy the proton Is a soup of quarks
and gluons

- We can use the electron to probe the proton
structure

30



Figure 7.20 Dominant contribution to deep inelastic lepton—proton scattering in the quark
model, where £ =¢e or .
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p
hadrons

Figure 7.20 Dominant contribution to deep inelastic lepton—proton scattering in the quark
model, where £ =¢e or .
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'S
Momentum transfer:
q=p'-p

(NB! Q* =~ )
Comple

Ined by lepton!

hadrons

Figure 7.20 Dominant contribution to deep inelastic lepton—proton scattering in the quark
model, where £ =¢e or .
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Figure 7.20 Dominant contribution to deep inelastic lepton—proton scattering in the quark
NB! model, where £ = ¢ or .

Because of asymptotic freedom we can treat the parton as
a real particle instead of the part of a complicated.
The scattering itself is therefore elastic!
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Figure 7.21 Measured values of the structure function F,(x, Qz) from a deep inelastic scat-
tering experiment using muons. The data points at the lower x values have been multiplied by
the factors in brackets so that they can be displayed on a single diagram. (Reprinted Figure 32
with permission from L. Montanet et al., Phys. Rev. D, 50, 1173. Copyright 1994 American
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What do we learn?
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No Q dependence — Quarks are
ointlike particles
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Figure 7.21 Measured values of the structure function F, (x:Ql) from a deep inelastic scat-
tering experiment using muons. The data points at the lower x values have been multiplied by
the factors in brackets so that they can be displayed on a single diagram. (Reprinted Figure 32
with permission from L. Montanet et al., Phys. Rev. D, 50, 1173. Copyright 1994 American
Physical Society.)
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The small Q dependence Is due to
gluons
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Figure 7.21 Measured values of the structure function F,(x, Qz) from a deep inelastic scat-
tering experiment using muons. The data points at the lower x values have been multiplied by
the factors in brackets so that they can be displayed on a single diagram. (Reprinted Figure 32
with permission from L. Montanet et al., Phys. Rev. D, 50, 1173. Copyright 1994 American

Physical Society.)



Number of quarks grows at small x
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Figure 7.21 Measured values of the structure function F, (x,Qz) from a deep inelastic scat-
tering experiment using muons. The data points at the lower x values have been multiplied by
the factors in brackets so that they can be displayed on a single diagram. (Reprinted Figure 32
with permission from L. Montanet et al., Phys. Rev. D, 50, 1173. Copyright 1994 American
Physical Society.)
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The proton structure depends on the
scale at which you resolve It
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Interpreting the result in the quark

do a’ 1 [ 2 0/2) F ( QE)-i— in? (6/2) 0> - ( QE)]
= — | cos 2 {x, sin X :
dE'dQ’  4E?sin*(6/2) v i xMm?
(1.53)
F(x,0) =) exf,(x), (7.56)
CLaTa)
and
2xF(x,0*) =F,(x,0Q%) (spin—3), (7.57b)

F>(x,0%) ~ Z (€2 xf.(x) + & xfa(x)],



Result: information about the

structure
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Figure 7.23 Quark and antiquark distributions (7.59a), together with the valence qua
distribution (7.59b), measured at a Q* value of about 10GeV?, from neutrino experimetl
at CERN and Fermilab.

One quark:

Three quarks:

Three interacting
quarks:

Valence quarks
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Result: ~50% of energy carried by
valence quarks

Q*~10GeV*

Figure 7.23 Quark and antiquark distributions (7.59a), together with the valence qua
distribution (7.59b), measured at a Q2 value of about 10 GeV?, from neutrino experimel
at CERN and Fermilab.
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