next up previous contents
Next: Simulations Up: Theoretical Approach Previous: Influences on the Fluctuations   Contents

Some Comparisons Between Various Measures

As was mentioned earlier several measures, along with $ v(Q)$, have been suggested for characterizing the fluctuations. Here are the definitions of some of them. (The definition of $ v(Q)$ is given once more for direct comparison.)

  $\displaystyle v(Q)$ $\displaystyle \quad\equiv\quad$ $\displaystyle \frac{\mt{V}(Q)}{\<n_{ch}\>}<tex2html_comment_mark>134$ (32)
     
  $\displaystyle v(R)$ $\displaystyle \quad\equiv\quad$ $\displaystyle \mt{V}(R) \cdot \<n_{ch}\> = \mt{V}\left(\frac{n_+}{n_-}\right) \cdot \<n_{ch}\> \qquad \qquad$ $\displaystyle \mt{\cite{jeon}}$ (33)
     
  $\displaystyle \Gamma$ $\displaystyle \quad\equiv\quad$ $\displaystyle \frac{1}{\<n_{ch}\>}\left\<\left(Q-\frac{\<Q\>}{\<n_{ch}\>}n_{ch}\right)^2\right\> \qquad \qquad$ $\displaystyle \mt{\cite{mrow}}$ (34)
     
  $\displaystyle \nu_{dyn}$ $\displaystyle \quad\equiv\quad$ $\displaystyle \left\<\left(\frac{n_+}{\<n_+\>}-\frac{n_-}{\<n_-\>}\right)^2\right\> - \left(\frac{1}{\<n_+\>}+\frac{1}{\<n_-\>}\right) \qquad \qquad$ $\displaystyle \mt{\cite{prun}}$ (35)

In the stochastic scenario it was shown earlier that $ v(Q)=1-\varepsilon^2$, independent of $ n_{ch}$. However, $ v(R)$ as a function of $ n_{ch}$ suffers from a skewness. In the case where $ \varepsilon=0$, $ v(R)$ approaches the value 4 as $ n_{ch}$ increases. For fixed $ n_{ch}$ with $ \varepsilon \neq 0$

$\displaystyle \mt{V}(R)$ $\displaystyle = \mt{V}\left(\frac{n_+}{n_-}\right) = \mt{V}\left(\frac{n_+}{n_{ch}-n_+}\right) = \mt{V}\left(\frac{n_{ch}}{n_{ch}-n_+}-1\right) =$    
     
  $\displaystyle = \mt{V}\left(\frac{n_{ch}}{n_-}\right) = n_{ch}^2 \cdot \mt{V}\l...
...c{1}{n_-}\right) \approx n_{ch}^2 \cdot \frac{1}{\<n_-\>^4} \cdot \mt{V}(n_-) =$    
     
  $\displaystyle = n_{ch}^2 \cdot \frac{1}{(p_-n_{ch})^4} \cdot p_+p_-n_{ch} = \fr...
...arepsilon)^4}{16}} = \frac{4}{n_{ch}} \frac{1+\varepsilon}{(1-\varepsilon)^3} =$    
     
  $\displaystyle = \frac{4}{n_{ch}} [ 1 + 4\varepsilon + O(\varepsilon^2) ]$ (36)

and consequently

$\displaystyle v(R) = 4 + 16\varepsilon + O(\varepsilon^2)$ (37)

which shows that $ v(R)$ is more sensitive than $ v(Q)$ to an asymmetry in charge.

The $ \Gamma$ measure is quite similar to $ v(Q)$. Since $ \frac{\<Q\>}{\<n_{ch}\>}=\varepsilon$ and $ \<Q-\varepsilon \cdot n_{ch}\>=0$, equation (3.22) can be rewritten to yield

$\displaystyle \Gamma$ $\displaystyle = \frac{1}{\<n_{ch}\>} \mt{V}(Q-\varepsilon \cdot n_{ch}) =$    
     
  $\displaystyle = \frac{1}{\<n_{ch}\>} \left[\<Q^2\> + \varepsilon^2\<n_{ch}^2\> ...
...\> - \<Q\>^2 - \varepsilon^2\<n_{ch}\>^2 + 2\varepsilon\<Q\>\<n_{ch}\>\right] =$    
     
  $\displaystyle = \frac{1}{\<n_{ch}\>} \left[\mt{V}(Q) + \varepsilon^2\mt{V}(n_{c...
...] = \frac{1}{\<n_{ch}\>} \left[\mt{V}(Q) - \varepsilon^2\mt{V}(n_{ch})\right] =$    
     
  $\displaystyle = v(Q) - \varepsilon^2 v(n_{ch})$ (38)

where the relation below was used.

$\displaystyle \<Q \cdot n_{ch}\>$ $\displaystyle = \sum_{n_{ch}}\Pi_{n_{ch}}\sum_{n_+}\Pi_{n_+}(2n_+-n_{ch})n_{ch} =$    
     
  $\displaystyle = 2\sum_{n_{ch}}\Pi_{n_{ch}}n_{ch}\sum_{n_+}\Pi_{n_+}n_+ - \sum_{n_{ch}}\Pi_{n{ch}}n_{ch}^2 = (2p_+-1)\<n_{ch}^2\> = \varepsilon\<n_{ch}^2\>$ (39)

If $ \varepsilon=0$, (3.26) shows that $ \Gamma$ is equal to $ v(Q)$. Comparing with (3.15) it is seen that when using $ \Gamma$ the $ v(n_{ch})$ dependence is gone. The corresponding result for $ \Gamma$ is

$\displaystyle \Gamma = (1-p_a)(1-\varepsilon^2)$ (40)

The $ \nu _{dyn}$ measure, equation (3.23), can also be written

$\displaystyle \nu_{dyn}$ $\displaystyle = \left\<\left(\frac{n_+}{\<n_+\>}-\frac{n_-}{\<n_-\>}\right)^2\right\> - \left(\frac{1}{\<n_+\>}+\frac{1}{\<n_-\>}\right) =$    
     
  $\displaystyle = \frac{4}{\<n_{ch}\>^2} \left\<\left(\frac{n_+}{1+\varepsilon}-\...
...c{2}{\<n_{ch}\>} \left(\frac{1}{1+\varepsilon}+\frac{1}{1-\varepsilon}\right) =$    
     
  $\displaystyle = \frac{4}{\<n_{ch}\>} \left[ \frac{\left\<\left(\frac{n_+}{1+\va...
...1-\varepsilon}\right)^2\right\>}{\<n_{ch}\>} -\frac{1}{1-\varepsilon^2} \right]$ (41)

and with charge symmetry, $ \varepsilon=0$,

$\displaystyle \nu_{dyn} = \frac{4}{\<n_{ch}\>} \left[v(Q)-1\right]$ (42)

It can easily be shown that, in the stochastic scenario, $ \nu_{dyn}=0$ and the result for $ \nu _{dyn}$ corresponding to equations (3.15) and (3.28) is

$\displaystyle \nu_{dyn} = -\frac{4}{\<n_{ch}\>} \cdot \frac{p_a}{1-\varepsilon^2}$ (43)

For a given set of events this would yield a constant value, since $ \<n_{ch}\>=p_a\<N_{ch}\>$. This value would be unaffected by an efficiency less than 100% [25], but would change when a background contribution is added, as will be seen in section 3.2.


next up previous contents
Next: Simulations Up: Theoretical Approach Previous: Influences on the Fluctuations   Contents
Henrik Tydesjo 2003-02-24