next up previous contents
Next: Some Comparisons Between Various Up: Theoretical Approach Previous: Physics Motivation   Contents

Influences on the Fluctuations

Since charge is a globally conserved quantity, the fluctuation measurements are strongly dependent on the acceptance of the detector. If all charged particles, denoted $ N_{ch}$, are detected in each event, i.e. with 100% detection efficiency and a $ 4\pi$ detector, there are no fluctuations, and $ v(Q)=0$.

Another property that may alter the magnitude of the fluctuations is charge asymmetry, i.e. when - for some reason - more positive than negative particles are detected or vice versa. This was seen already in (3.1). With $ \varepsilon \equiv p_+-p_-$ representing a small excess of positive particles, $ v(Q)=4p_+p_-=1-\varepsilon^2$ in this case.

Neutral resonances, such as $ \rho$ and $ \omega$, introduce positive correlations between $ n_+$ and $ n_-$ and therefore reduce the fluctuations. In [17] Jeon and Koch estimate the reduction to $ v(Q)=0.75$.This effect will be examined in simulations in section 3.2.

Global charge conservation and charge asymmetry can be incorporated into one calculation to yield a more general result for $ v(Q)$. Let $ p_a$ denote the fraction of observed charged particles among all charged particles in the event. In the following derivation both $ n_{ch}$ and $ n_+(n_-)$ are binomially distributed (with probabilities $ p_a$ and $ p_+(p_-)$, and the probability distribution for $ N_{ch}$ is denoted $ \Pi$. It is also assumed that the ratio between $ N_+$ and $ N_-$ is constant. [*] First, a few building blocks needed to find the expression for V$ (Q)$:


$\displaystyle \<n_+\>$ $\displaystyle =$ $\displaystyle \sum_{N_{ch}} \Pi p_a p_+ N_{ch} = p_a p_+ \<N_{ch}\>$ (19)
       
       
$\displaystyle \<n_-\>$ $\displaystyle =$ $\displaystyle \sum_{N_{ch}} \Pi p_a p_- N_{ch} = p_a p_- \<N_{ch}\>$ (20)
       
       
$\displaystyle \<n_+^2\>$ $\displaystyle =$ $\displaystyle \sum_{N_{ch}} \Pi \left[p_a(1-p_a)p_+N_{ch} + p_a^2p_+^2N_{ch}^2\right] =$  
       
  $\displaystyle =$ $\displaystyle p_a(1-p_a)p_+\<N_{ch}\> + p_a^2p_+^2\<N_{ch}^2\>$ (21)
       
       
$\displaystyle \<n_-^2\>$ $\displaystyle =$ $\displaystyle \sum_{N_{ch}} \Pi \left[p_a(1-p_a)p_-N_{ch} + p_a^2p_-^2N_{ch}^2\right] =$  
       
  $\displaystyle =$ $\displaystyle p_a(1-p_a)p_-\<N_{ch}\> + p_a^2p_-^2\<N_{ch}^2\>$ (22)
       
       
$\displaystyle \<n_+n_-\>$ $\displaystyle =$ $\displaystyle \sum_{N_{ch}} \Pi p_a^2p_+p_-N_{ch}^2 = p_a^2p_+p_-\<N_{ch}^2\>$ (23)

Using equations (3.7) - (3.11) the expression for V$ (Q)$ is


$\displaystyle \mt{V}(Q)$ $\displaystyle \equiv$ $\displaystyle \<Q^2\>-\<Q\>^2 = \<(n_+-n_-)^2\> - \<n_+-n_-\>^2 =$  
       
  $\displaystyle =$ $\displaystyle \<n_+^2\> + \<n_-^2\> - 2\<n_+n_-\> -
\<n_+\>^2 - \<n_-\>^2 + 2\<n_+\>\<n_-\> =$  
       
  $\displaystyle =$ $\displaystyle p_a(1-p_a)p_+\<N_{ch}\> + p_a^2p_+^2\<N_{ch}^2\> + p_a(1-p_a)p_-\<N_{ch}\> +p_a^2p_-^2\<N_{ch}^2\> -$  
       
    $\displaystyle - 2p_a^2p_+p_-\<N_{ch}^2\> - p_a^2p_+^2\<N_{ch}\>^2 - p_a^2p_-^2\<N_{ch}\>^2 + 2p_a^2p_+p_-\<N_{ch}\>^2 =$  
       
  $\displaystyle =$ $\displaystyle p_a(1-p_a)\<N_{ch}\> + p_a^2(p_+^2+p_-^2-2p_+p_-)\<N_{ch}^2\> -$  
       
    $\displaystyle - p_a^2(p_+^2+p_-^2-2p_+p_-)\<N_{ch}\>^2 =$  
       
  $\displaystyle =$ $\displaystyle (1-p_a)\<n_{ch}\> + p_a^2\varepsilon^2\mt{V}(N_{ch})$ (24)

V$ (n_{ch})$ can be used in order to express V$ (N_{ch})$ in terms of $ n_{ch}$:


$\displaystyle \mt{V}(n_{ch})$ $\displaystyle \equiv$ $\displaystyle \<n_{ch}^2\> - \<n_{ch}\>^2 =$  
       
  $\displaystyle =$ $\displaystyle \sum_{N_{ch}} \Pi \left[p_a(1-p_a)N_{ch} + p_a^2N_{ch}^2\right] - p_a^2\<N_{ch}\>^2 =$  
       
  $\displaystyle =$ $\displaystyle p_a(1-p_a)\<N_{ch}\> + p_a^2\<N_{ch}^2\> - p_a^2\<N_{ch}\>^2 =$  
       
  $\displaystyle =$ $\displaystyle p_a(1-p_a)\<N_{ch}\> + p_a^2\mt{V}(N_{ch})$ (25)

Using (3.13) in (3.12) yields


$\displaystyle \mt{V}(Q)$ $\displaystyle =$ $\displaystyle (1-p_a)\<n_{ch}\> + \varepsilon^2 \cdot (\mt{V}(n_{ch})-(1-p_a)\<n_{ch}\>) =$  
       
  $\displaystyle =$ $\displaystyle (1-p_a)(1-\varepsilon^2)\<n_{ch}\> + \varepsilon^2\mt{V}(n_{ch})$ (26)

and the result can finally be given with normalized variances:

$\displaystyle v(Q) = (1-p_a)(1-\varepsilon^2) + \varepsilon^2v(n_{ch})$ (27)

Experimental effects, such as background contributions and detection inefficiencies, also influence the magnitude of the fluctuations. The effect of a background consisting of uncorrelated positive and negative particles can easily be estimated. The observed variance V$ _{obs}(Q)$ is the sum of the true and background contributions.

$\displaystyle \mt{V}_{obs}(Q) = \mt{V}_{true}(Q) + \mt{V}_{bkg}(Q)$ (28)

With $ f_{bkg}$ being the fraction of the particles coming from background,


$\displaystyle v_{obs}(Q)$ $\displaystyle =$ $\displaystyle (1-f_{bkg}) \cdot v_{true}(Q) + f_{bkg} =$  
       
  $\displaystyle =$ $\displaystyle 1 - (1-f_{bkg}) (1-v_{true}(Q))$ (29)

Background contributions move a reduced $ v(Q)$ towards the value 1, the stochastic scenario. Detection inefficiencies affect the fluctuations in a similar way. Assuming that the detection efficiency $ p_e$ is equal for positive and negative particles,

$\displaystyle v_{obs}(Q) = 1 - p_e (1-v_{true}(Q))$ (30)

The combined result can be obtained by substituting $ v_{obs}(Q)$ of (3.18) into $ v_{true}(Q)$ in (3.17):

$\displaystyle v_{obs}(Q) = 1 - p_e (1-f_{bkg}) (1-v_{true}(Q))$ (31)


next up previous contents
Next: Some Comparisons Between Various Up: Theoretical Approach Previous: Physics Motivation   Contents
Henrik Tydesjo 2003-02-24